PacT Series

ComPacT NS - Communication Modbus

Guide utilisateur

PacT Series offre des disjoncteurs et interrupteurs de première qualité.

DOCA0220FR-01 07/2022

Mentions légales

La marque Schneider Electric et toutes les marques de commerce de Schneider Electric SE et de ses filiales mentionnées dans ce guide sont la propriété de Schneider Electric SE ou de ses filiales. Toutes les autres marques peuvent être des marques de commerce de leurs propriétaires respectifs. Ce guide et son contenu sont protégés par les lois sur la propriété intellectuelle applicables et sont fournis à titre d'information uniquement. Aucune partie de ce guide ne peut être reproduite ou transmise sous quelque forme ou par quelque moyen que ce soit (électronique, mécanique, photocopie, enregistrement ou autre), à quelque fin que ce soit, sans l'autorisation écrite préalable de Schneider Electric.

Schneider Electric n'accorde aucun droit ni aucune licence d'utilisation commerciale de ce guide ou de son contenu, sauf dans le cadre d'une licence non exclusive et personnelle, pour le consulter tel quel.

Les produits et équipements Schneider Electric doivent être installés, utilisés et entretenus uniquement par le personnel qualifié.

Les normes, spécifications et conceptions sont susceptibles d'être modifiées à tout moment. Les informations contenues dans ce guide peuvent faire l'objet de modifications sans préavis.

Dans la mesure permise par la loi applicable, Schneider Electric et ses filiales déclinent toute responsabilité en cas d'erreurs ou d'omissions dans le contenu informatif du présent document ou pour toute conséquence résultant de l'utilisation des informations qu'il contient.

En tant que membre d'un groupe d'entreprises responsables et inclusives, nous actualisons nos communications qui contiennent une terminologie non inclusive. Cependant, tant que nous n'aurons pas terminé ce processus, notre contenu pourra toujours contenir des termes standardisés du secteur qui pourraient être jugés inappropriés par nos clients.

Table des matières

Consignes de sécurité	7
About the Book	9
Communication Modbus avec les disjoncteurs ComPacT	
NS	11
Présentation	
Description	
Unité fonctionnelle intelligente (IMU)	
Logiciel EcoStruxure Power Commission	
Interface IFM	
Présentation	20
Description du matériel	21
Schémas avec disjoncteurs ComPacT NS	25
Configuration	28
Test de communication	30
Interface IFE	31
Présentation	32
Description du matériel	33
Schémas avec disjoncteurs ComPacT NS	38
Protocole Modbus avec disjoncteurs ComPacT NS	41
Principe maître-esclave Modbus	
Recommandation pour la programmation avec Modbus	45
Fonctions de Modbus	47
Codes d'exception Modbus	52
Protection en écriture	54
Gestion des mots de passe	55
Interface de commande	57
Exemples de commande	62
Gestion de la date	
Tables des registres Modbus	
Jeu de données	75
Jeu de données standard	76
Jeu de données standard	77
Registres Modbus	78
Exemples de lecture	81
Registres communs du jeu de données standard	83
Jeu de données hérité	98
Jeu de données hérité	99
Registres Modbus	
Exemples de lecture	
Registres communs du jeu de données hérité	104
Données du déclencheur MicroLogic pour les disjoncteurs	
ComPacT NS	116
Registres du déclencheur MicroLogic	117
Mesures en temps réel	
Valeurs minimales/maximales des mesures en temps réel	122
Mesures de l'énergie	
Mesures de la demande	125

Identification du déclencheur MicroLogic	
Etat	
Historique des alarmes	
Historique des déclenchements	
Paramètres de protection de base	
Paramètres de protection avancée	
Paramètres de mesure	152
Informations horodatées	
Indicateurs de maintenance	
Divers	
Fichiers des déclencheurs MicroLogic	
Mécanisme de gestion des fichiers	
Historique des événements de protection	
Historique des événements de protection de la maintenance	
Commandes du déclencheur MicroLogic	
Liste des commandes et des codes d'erreur MicroLogic	
Commandes de configuration des mesures	173
Données des modules BCM ULP pour les disjoncteurs	
ComPacT NS	178
Registres du module BCM ULP	
Identification du module BCM ULP	
Etat du disjoncteur	181
Informations horodatées	
Compteurs	187
Historique des déclenchements	
Fichiers du module BCM ULP	
Historique des événements du gestionnaire de disjoncteur	
Commandes du module BCM ULP	
Liste des commandes et des codes d'erreurs du module BCM	
ULP	195
Commandes de contrôle du disjoncteur	
Données des modules IO pour les disjoncteurs ComPacT	
NS	107
Registres du module IO	
Entrées analogiques	
Entrées numériques	
Sorties numériques	
Paramètres du matériel	
Etat des entrées et des sorties numériques	
Identification du module IO	
Etat des alarmes	
Applications	
Événements du module IO	
Historique des événements	
Evénements et alarmes du module IO	
Commandes du module IO	
Liste des commandes IO Module	
Commandes génériques	
Commandes d'application	
Commence a approarion	

4

Données de l'interface IFM pour les disjoncteurs ComPacT	
NS	238
Registres de l'interface IFM	239
Identification de l'interface IFM	240
Paramètres réseau Modbus	243
Commandes de l'interface IFM	245
Liste des commandes de l'interface IFM	246
Commandes de l'interface IFM	247
Données de l'interface IFE pour les disjoncteurs ComPacT	
NS	250
Registres de l'interface IFE	251
Registres d'identification et d'état de l'interface IFE	252
Paramètres réseau IP	
Commandes de l'interface IFE	258
Liste des commandes de l'interface IFE	259
Commandes génériques de l'interface IFE	260
Annexes	263
Références croisées des registres Modbus pour les disjoncteurs	
ComPacT NS	264
Références croisées des registres Modbus pour les disjoncteurs	
ComPacT NS	265

Consignes de sécurité

Informations importantes

Lisez attentivement ces instructions et examinez le matériel pour vous familiariser avec l'appareil avant de tenter de l'installer, de le faire fonctionner, de le réparer ou d'assurer sa maintenance. Les messages spéciaux suivants que vous trouverez dans cette documentation ou sur l'appareil ont pour but de vous mettre en garde contre des risques potentiels ou d'attirer votre attention sur des informations qui clarifient ou simplifient une procédure.

La présence de ce symbole sur une étiquette "Danger" ou "Avertissement" signale un risque d'électrocution qui provoquera des blessures physiques en cas de non-respect des consignes de sécurité.

Ce symbole est le symbole d'alerte de sécurité. Il vous avertit d'un risque de blessures corporelles. Respectez scrupuleusement les consignes de sécurité associées à ce symbole pour éviter de vous blesser ou de mettre votre vie en danger.

A DANGER

DANGER signale un risque qui, en cas de non-respect des consignes de sécurité, **provoque** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** la mort ou des blessures graves.

A ATTENTION

ATTENTION signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** des blessures légères ou moyennement graves.

AVIS

AVIS indique des pratiques n'entraînant pas de risques corporels.

Remarque Importante

L'installation, l'utilisation, la réparation et la maintenance des équipements électriques doivent être assurées par du personnel qualifié uniquement. Schneider Electric décline toute responsabilité quant aux conséquences de l'utilisation de ce matériel.

Une personne qualifiée est une personne disposant de compétences et de connaissances dans le domaine de la construction, du fonctionnement et de l'installation des équipements électriques, et ayant suivi une formation en sécurité leur permettant d'identifier et d'éviter les risques encourus.

Avis concenant la cybersécurité

AAVERTISSEMENT

RISQUES POUVANT AFFECTER LA DISPONIBILITÉ, L'INTÉGRITÉ ET LA CONFIDENTIALITÉ DU SYSTÈME

- Modifiez les mots de passe par défaut à la première utilisation, afin d'empêcher tout accès non autorisé aux réglages, contrôles et informations des appareils.
- Désactivez les ports et services inutilisés, ainsi que les comptes par défaut, pour réduire le risque d'attaques malveillantes.
- Protégez les appareils en réseau par plusieurs niveaux de cyberdéfense (pare-feu, segmentation du réseau, détection des intrusions et protection du réseau).
- Respectez les bonnes pratiques de cybersécurité (par exemple : moindre privilège, séparation des tâches) pour réduire les risques d'intrusion, la perte ou l'altération des données et journaux, ou l'interruption des services.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

About the Book

Document Scope

L'objectif de ce document est de fournir aux utilisateurs, aux installateurs et au personnel de maintenance les informations techniques nécessaires à l'utilisation du protocole Modbus sur les disjoncteurs ComPacT™ NS et les switch-disconnectors de 630 à 3200 A.

Validity Note

Ce document s'applique aux disjoncteurs ComPacT NS équipés d'un module de communication de disjoncteur BCM ULP intégré et raccordés :

- soit à un réseau Modbus de liaison série RS 485 via une interface Modbus-SL IFM pour un disjoncteur,
- soit à un réseau Ethernet via une interface Ethernet IFE pour un disjoncteur ou un serveur de tableau Ethernet IFE.

Ce document décrit les registres et les commandes disponibles pour les modules IMU équipés des versions suivantes de micrologiciel

Module IMU	Référence	Version du firmware
MicroLogic Déclencheur A	_	≥ V01.029
MicroLogic Déclencheur E	-	≥ V1.016
MicroLogic Déclencheur P	_	≥ 2014AQ ou 8.284
Module BCM ULP	_	≥ V4.1.9
Module IO	LV434063	≥ V003.004.005
Interface IFM	LV434000	≥ V003.001.012
IFE Interface Ethernet	LV434001	≥ V004.007.000
	LV434010	
Serveur IFE	LV434002	≥ V003.016.000
	LV434011	

Vous pouvez mettre à jour le firmware des modules IMU à l'aide de la version la plus récente du logiciel EcoStruxure Power Commission.

Reportez-vous au *Guide utilisateur Modbus hérité* Related Documents, page 10 Masterpact pour en savoir plus sur les architectures de communication utilisant :

- le port Modbus hérité du module BCM ULP
- · l'interface IFM avec firmware Modbus hérité.

NOTE: Tous les modules de communication BCM sont des modules BCM ULP depuis la semaine 45 de 2010.

Online Information

The information contained in this guide is likely to be updated at any time. Schneider Electric strongly recommends that you have the most recent and up-to-date version available on www.se.com/ww/en/download.

The technical characteristics of the devices described in this guide also appear online. To access the information online, go to the Schneider Electric home page at www.se.com.

Related Documents

Title of documentation	Reference number
ComPacT NS - Circuit Breakers and Switch-Disconnectors - User Guide	DOCA0221EN
ComPacT NS - MicroLogic A/E Trip Units - User Guide	DOCA0218EN
ComPacT NS - MicroLogic P Trip Units - User Guide	DOCA0219EN
MasterPacT NT/NW, ComPact NS, PowerPact P- and R-Frame Communication Option – Installation Manual	EAV3608000 (EN, ES, FR)
ULP System (IEC Standard) – ULP (Universal Logic Plug) System – User Guide	DOCA0093EN
Enerlin'X IFE – Ethernet Switchboard Server – User Guide	DOCA0084EN
Enerlin'X IFE - Ethernet Interface for One IEC Circuit Breaker – User Guide	DOCA0142EN
Enerlin'X IO – Input/Output Application Module for One IEC Circuit Breaker – User Guide	DOCA0055EN
Enerlin'X IO – Input/Output Application Module for One Circuit Breaker – Instruction Sheet	HRB49217
Enerlin'X IFE – Ethernet Interface for One Circuit Breaker – Instruction Sheet	QGH13473
Enerlin'X IFM – Modbus-SL Interface for One Circuit Breaker – Instruction Sheet	NVE85393
Modbus Communication Option for MasterPact MicroLogic – User Guide	COMBT32EN

Vous pouvez télécharger ces publications et autres informations techniques depuis notre site web à l'adresse : https://www.se.com/en/download.

Communication Modbus avec les disjoncteurs ComPacT NS

Contenu de cette partie

Présentation	12
nterface IFM	
nterface IFE	31

Présentation

Contenu de ce chapitre

Description	13
Unité fonctionnelle intelligente (IMU)	14
Logiciel EcoStruxure Power Commission	

Gamme principale PacT Series

Pérennisez votre installation grâce aux PacT Series basse et moyenne tension de Schneider Electric. Fondée sur l'innovation légendaire de Schneider Electric, la PacT Series comprend des disjoncteurs, des interrupteurs, des relais différentiels et des fusibles, adaptés à toutes les applications standard et spécifiques. Bénéficiez de performances fiables avec la PacT Series sur les tableaux de distribution compatibles EcoStruxure, de 16 à 6300 A en basse tension et jusqu'à 40,5 kV en moyenne tension.

Description

Communication Modbus

L'option de communication Modbus permet de connecter des disjoncteurs Schneider Electric basse tension à un superviseur ou à tout autre dispositif disposant d'un canal de communication Modbus maître.

Les disjoncteurs peuvent être raccordés à un réseau de liaison série RS-485 avec le protocole Modbus ou à un réseau Ethernet avec le protocole Modbus TCP/IP, en utilisant des interfaces dédiées comme :

- l'interface IFM Modbus-SL pour un disjoncteur, permettant de raccorder le disjoncteur à un réseau de liaison série RS-485 ; ou
- l'interface IFE Ethernet pour un disjoncteur ou le serveur de tableau IFE Ethernet, permettant de raccorder le disjoncteur à un réseau Ethernet.

Accès aux fonctions

L'option de communication Modbus donne accès à un grand nombre de fonctions, notamment :

- la lecture des données de diagnostic et de mesure.
- · la lecture des conditions d'état et des opérations à distance.
- · le transfert des événements horodatés.
- · l'affichage des réglages de protection.
- la lecture des données d'identification et de configuration des disjoncteurs.
- la commande à distance du disjoncteur.
- le réglage de l'horloge et la synchronisation.

Cette liste varie selon la composition de l'unité fonctionnelle intelligente (type de disjoncteur, déclencheur MicroLogic, etc.) et les fonctions activées.

Unité fonctionnelle intelligente (IMU)

Définition

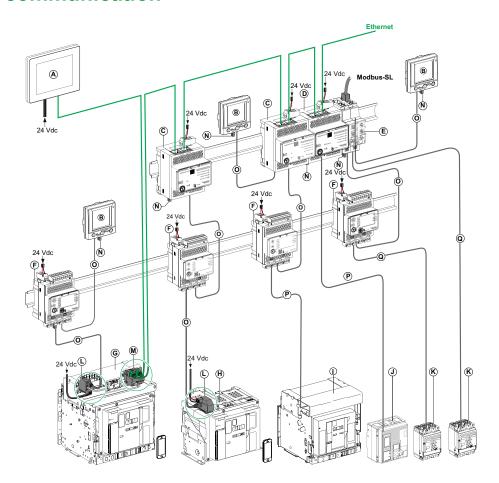
Une unité fonctionnelle est un ensemble mécanique et électrique contenant un ou plusieurs produits et permettant d'exécuter une fonction dans un tableau électrique (protection de l'arrivée, commande de moteur et contrôle).

Le disjoncteur équipé de ses composants internes de communication (unité de commande MicroLogic ou déclencheur MicroLogic) et de modules externes ULP (module IO) connectés à une interface de communication constitue une unité fonctionnelle intelligente (IMU).

Une IMU est constituée autour d'un disjoncteur à partir des gammes suivantes :

- Disjoncteurs MasterPact MTZ
- Disjoncteurs MasterPact NT/NW
- Disjoncteurs ComPacT NS 630b-1600
- Disjoncteurs ComPacT NS 1600b-3200
- · Disjoncteurs PowerPacT à châssis P- et R-
- Disjoncteurs ComPacT NSX
- · Disjoncteurs PowerPacT à châssis H- et J-L-

Modules ULP par gamme de disjoncteurs


Le tableau suivant indique les modules ULP compatibles pour chaque gamme de disjoncteurs.

Module ULP	Référence	MasterPact MTZ avec module de port ULP et unité de contrôle MicroLogic	MasterPact NT/NW ou ComPacT NS or PowerPacT P- and R- Frame avec module BCM ULP et déclencheur MicroLogic	ComPacT NSX or PowerPacT H-, J-, and L- Frame avec module BSCM et/ou déclencheur MicroLogic
Interface Ethernet IFE pour un disjoncteur	LV434001 LV434010	1	✓	1
Serveur de tableau Ethernet IFE	LV434002 LV434011	1	✓	1
Interface Ethernet EIFE intégrée pour un disjoncteur débrochable MasterPact MTZ	LV851001	✓	-	-
Kit de pièces de rechange EIFE pour un disjoncteur débrochable MasterPact MTZ1	LV851100SP	✓	-	-
Kit de pièces de rechange EIFE pour un disjoncteur débrochable MasterPact MTZ2/MTZ3	LV851200SP	1	-	-
Interface Modbus-SL IFM pour un disjoncteur	TRV00210 STRV00210	-	✓	✓
Interface Modbus-SL IFM pour un disjoncteur	LV434000	1	1	1
Module d'affichage en face avant FDM121 pour un disjoncteur	TRV00121 STRV00121	-	✓	1

Module ULP	Référence	MasterPact MTZ avec module de port ULP et unité de contrôle MicroLogic	MasterPact NT/NW ou ComPacT NS or PowerPacT P- and R- Frame avec module BCM ULP et déclencheur MicroLogic	ComPacT NSX or PowerPacT H-, J-, and L- Frame avec module BSCM et/ou déclencheur MicroLogic
Module interface d'entrée/ sortie IO pour un disjoncteur	LV434063	✓	✓	✓
Interface de maintenance USB	TRV00911 STRV00911	-	✓	✓

Pour plus d'informations sur le système ULP et ses composants, reportez-vous aux *Guides d'utilisation du système ULP*.

Architecture de communication

- A FDM128 Afficheur Ethernet pour huit appareils
- B FDM121 Module d'affichage en face avant pour un disjoncteur
- C Interface Ethernet IFE pour un disjoncteur
- **D** Serveur tableau IFE Ethernet
- E IFM Interface Modbus-SL pour un disjoncteur
- F IO Module d'application d'entrée/sortie pour un disjoncteur
- G Disjoncteur débrochable MasterPact MTZ1 ou MTZ2/MTZ3
- H Disjoncteur fixe MasterPact MTZ1 ou MTZ2/MTZ3
- I Disjoncteur MasterPact NT/NW
- J ComPacT Disjoncteur NS/PowerPacT à châssis M, P et R
- K ComPacT Disjoncteur NSX/PowerPacT à châssis H, J et L
- L ULP (module à port)
- **M** EIFE Interface Ethernet Embarqué pour un disjoncteur MasterPact MTZ débrochable
- N ULP terminaison de ligne
- O Cordon ULP RJ45
- P Cordon BCM ULP de disjoncteur
- Q NSX cordon

Contrôleur distant

Un contrôleur distant est un dispositif qui permet de communiquer avec une IMU à l'aide d'une interface de communication, telle que l'interface Ethernet IFE. Par exemple, l'afficheur Ethernet FDM128 pour 8 dispositifs, le superviseur, l'automate programmable, le système BMS, le système SCADA, etc. sont des contrôleurs distants.

Pour la description des registres et des commandes Modbus, consultez les *Guides de communication Modbus*.

Logiciel EcoStruxure Power Commission

Présentation

EcoStruxure™ Power Commission est le nouveau nom du logiciel Ecoreach.

EcoStruxure Power Commission software helps you to manage a project as part of testing, commissioning, and maintenance phases of the project life cycle. The innovative features in it provide simple ways to configure, test, and commission the smart electrical devices.

EcoStruxure Power Commission software automatically discovers the smart devices and allows you to add the devices for an easy configuration. You can generate comprehensive reports as part of Factory Acceptance Test and Site Acceptance Test to replace your heavy manual work. Additionally, when the panels are under operation, any change of settings made can be easily identified by a yellow highlighter. This indicates the difference between the project and device values, and hence provides a system consistency during the operation and maintenance phase.

Le logiciel EcoStruxure Power Commission permet de configurer les disjoncteurs, modules et accessoires suivants :

Gammes de disjoncteurs	Modules	Accessoires
Disjoncteurs MasterPact MTZ	Unité de contrôle MicroLogic X Modules d'interface de communication : interface IFM, interface IFE, serveur IFE et interface EIFE Modules ULP : Module IO	Module de sortie M2C
 Disjoncteurs MasterPact NT/NW ComPacT NS disjoncteurs PowerPacT P- and R-frame disjoncteurs 	Déclencheurs MicroLogic Modules d'interface de communication : module BCM, module CCM, module BCM ULP, interface IFM, interface IFE, serveur IFE Modules ULP : module IO, afficheur FDM121(1)	Modules de sortie M2C et M6C
 ComPacT NSX disjoncteurs PowerPacT H-, J-, and L-Frame disjoncteurs 	Déclencheurs MicroLogic Modules d'interface de communication : module BSCM, interface IFM, interface IFE, serveur IFE Modules ULP : module IO, afficheur FDM121(1)	Modules de sortie SDTAM et SDx

Pour plus d'informations, reportez-vous à l'aide en ligne du logiciel EcoStruxure Power Commission.

Le logiciel EcoStruxure Power Commission est disponible à l'adresse www.se. com.

Fonctionnalités clés

EcoStruxure Power Commission software performs the following actions for the supported devices and modules:

- Create projects by device discovery
- Save the project in the EcoStruxure Power Commission cloud for reference
- · Upload settings to the device and download settings from the device
- Compare the settings between the project and the device
- · Perform control actions in a secured way
- · Generate and print the device settings report
- Perform a communication wiring test on the entire project and generate and print test report
- View the communication architecture between the devices in a graphical representation
- · View the measurements, logs, and maintenance information
- Export Waveform Capture on Trip Event (WFC)
- · View the status of device and IO module
- · View the alarm details
- Buy, install, remove, or retrieve the Digital Modules
- · Check the system firmware compatibility status
- · Update to the latest device firmware
- · Perform force trip and automatic trip curve tests

Interface IFM

Contenu de ce chapitre

Présentation	20
Description du matériel	21
Schémas avec disjoncteurs ComPacT NS	
Configuration	
Test de communication	

Présentation

Vue d'ensemble

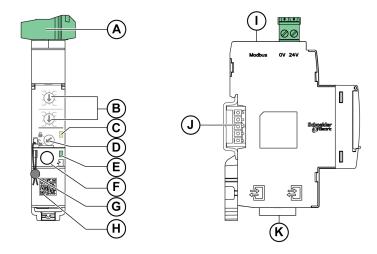
L'interface Modbus-SL IFM pour un disjoncteur permet à une unité fonctionnelle intelligente (IMU) équipée d'un disjoncteur ComPacT, PowerPacT ou MasterPact d'être raccordée à un réseau Modbus ligne série RS-485 Modbus-SL à deux fils. Chaque disjoncteur dispose de sa propre interface IFM et d'une adresse Modbus correspondante.

Types d'interface IFM

L'interface IFM porte la référence LV434000. L'interface IFM de référence LV434000 remplace complètement l'interface IFM de référence TRV00210 ou STRV00210.

NOTE:

- Concernant les données de l'interface IFM, les données de l'interface IFM de référence LV434000 sont identiques à celles de l'interface IFM de référence TRV00210 ou STRV00210.
- Les interfaces IFM TRV00210 et STRV00210 ne sont pas compatibles avec les disjoncteurs MasterPact MTZ.


Fonctions de l'interface IFM

Les principales fonctionnalités de l'interface IFM sont les suivantes :

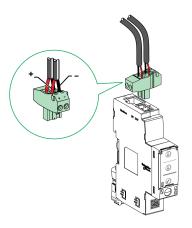
- · Une interface de liaison série Modbus fournie via
 - un connecteur RJ45
 - un accessoire de liaison empilable
- Des commutateurs rotatifs sur l'IHM pour définir les adresses et l'option de verrouillage
- Un bouton-poussoir dédié aux fonctionnalités de test

Description du matériel

Description générale

- A Bornier d'alimentation 24 VCC
- **B** Commutateurs rotatifs d'adresse Modbus
- C Voyant d'état du trafic Modbus
- **D** Commutateur de verrouillage Modbus
- E Voyant d'état ULP
- F Bouton de test
- G Verrouillage mécanique
- **H** Code QR pour informations produit
- I Port Modbus-SL RJ45
- **J** Accessoire de liaison empilable (TRV00217, en option)
- K 2 ports ULP RJ45

Pour plus d'informations sur l'installation, consultez l'instruction de service disponible sur le site Web de Schneider Electric : ${\rm NVE85393}$


Montage

L'interface IFM est un dispositif de montage sur rail DIN. L'accessoire de liaison permet d'interconnecter plusieurs interfaces IFM sans câble supplémentaire.

Alimentation 24 V CC

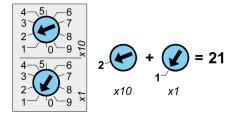
L'interface IFM doit toujours être alimentée en 24 V CC :

- Les interfaces IFM empilées sur un serveur IFE sont alimentées par le serveur IFE. Il n'est donc pas nécessaire de les alimenter séparément.
- Si les interfaces IFM sont empilées sans serveur IFE, une seule des interfaces IFM doit être alimentée en 24 V CC.
- Une interface IFM seule doit être alimentée en 24 V CC.

Il est conseillé d'utiliser une alimentation homologuée UL/approuvée UL à tension/intensité limitée ou de Classe 2 avec 24 V CC, 3 A maximum.

NOTE: dans le cas d'un raccordement à une alimentation 24 V CC, utilisez uniquement des conducteurs en cuivre.

Commutateurs rotatifs d'adresse Modbus


L'interface IFM indique l'adresse Modbus de l'IMU à laquelle elle est raccordée. Pour plus d'informations sur l'unité fonctionnelle intelligente, consultez le *Guide utilisateur du système ULP*.

Définissez l'adresse Modbus en utilisant les deux commutateurs rotatifs d'adresse situés sur la face avant de l'interface IFM.

La plage d'adresses est comprise entre 1 et 99. L'adresse 0 ne doit pas être utilisée, car elle est réservée aux commandes de diffusion.

L'interface IFM est configurée à l'origine avec l'adresse 99.

Exemple de configuration des commutateurs rotatifs d'adresse pour l'adresse 21 :

Voyant d'état du trafic Modbus

Le voyant d'état du trafic Modbus fournit à l'utilisateur des informations sur le trafic transmis ou reçu par le module IMU sur le réseau Modbus.

- Lorsque les commutateurs rotatifs d'adresse Modbus indiquent la valeur 0, le voyant jaune s'allume en continu.
- Lorsque les commutateurs rotatifs d'adresse Modbus indiquent une valeur comprise entre 1 et 99, le voyant s'allume en cas de transmission et de réception de messages. Il est éteint le reste du temps.

Commutateur de verrouillage Modbus

Le commutateur de verrouillage Modbus situé sur la face avant de l'interface IFM active ou désactive l'envoi de commandes à distance sur le réseau Modbus à l'interface IFM et aux autres modules de l'IMU raccordée.

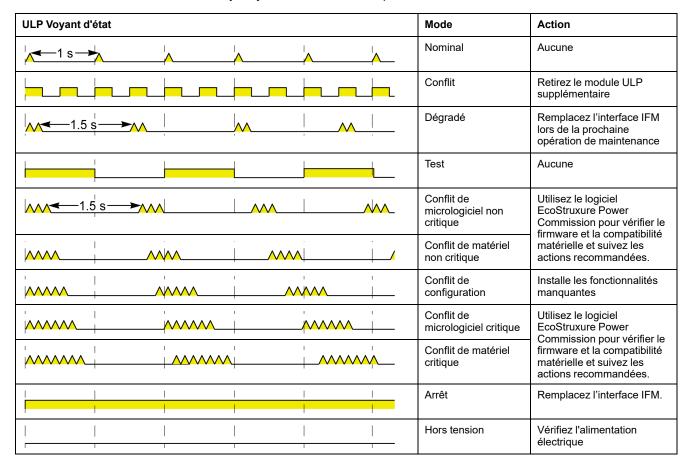
 Si la flèche pointe vers le cadenas ouvert (réglage d'usine), les commandes de contrôle à distance sont activées.

 Si la flèche pointe vers le cadenas fermé, les commandes de contrôle à distance sont désactivées.

Les seules commandes de contrôle à distance qui sont activées même si la flèche pointe vers le cadenas fermé sont les commandes de réglage de l'heure absolue et d'obtention de l'heure actuelle, page 246.

NOTE: pour les esclaves de l'interface IFM raccordés à un serveur de tableau Ethernet IFE, le commutateur de verrouillage de l'interface IFE ne désactive pas les commandes de contrôle à distance dans l'interface IFM.

Bouton de test


Le bouton de test permet de tester le raccordement entre tous les modules ULP raccordés à l'interface IFM.

Il suffit d'appuyer sur le bouton de test pour lancer le test de connexion durant 15 secondes.

Pendant le test, tous les modules ULP continuent de fonctionner normalement.

Voyant d'état ULP

Le voyant jaune d'état ULP indique le mode du module ULP.

Schémas avec disjoncteurs ComPacT NS

Description générale

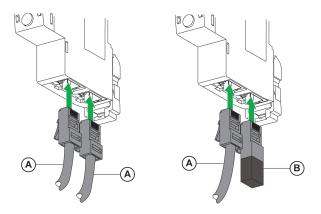
En fonction du type de disjoncteur utilisé, raccordez l'interface IFM au disjoncteur en utilisant l'une des configurations suivantes :

- Raccordement de l'interface IFM à un disjoncteur fixe à commande manuelle ComPacT NS avec un module BCM ULP
- Raccordement de l'interface IFM à un disjoncteur débrochable ComPacT NS avec un module BCM ULP et le module IO associé.

Pour plus d'informations, reportez-vous au Guide utilisateur du système ULP.

Connexion ULP

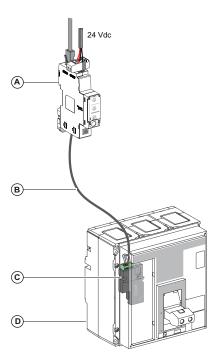
NOTICE


HAZARD OF EQUIPMENT DAMAGE

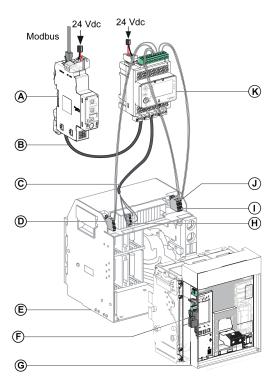
- Never connect a Modbus-SL device to an RJ45 ULP port.
- The RJ45 ULP ports of IFM interface are for ULP modules only.
- Any other use can damage the IFM interface or the device connected to the IFM interface.
- To check if an ULP module is compatible with the RJ45 ULP ports of IFM interface, refer to the ULP System User Guide.

Failure to follow these instructions can result in equipment damage.

Toutes les configurations de connexion requièrent le cordon de disjoncteur BCM ULP. Le cordon NSX isolé est obligatoire pour les tensions système supérieures à 480 V CA.


Lorsque le second port ULP RJ45 n'est pas utilisé, il doit être fermé à l'aide d'une terminaison de ligne ULP :

A Cordon BCM ULP ou RJ45 ULP du disjoncteur


B Terminaison de ligne ULP

Raccordement de l'interface IFM à un disjoncteur fixe à commande manuelle ComPacT NS

- A Interface Modbus-SL IFM pour un disjoncteur
- B Cordon de disjoncteur BCM ULP
- C Module de communication du disjoncteur BCM ULP
- D Disjoncteur fixe à commande manuelle ComPacT NS avec déclencheur MicroLogic A, E ou P

Raccordement de l'interface IFM à un disjoncteur débrochable ComPacT NS

A Interface Modbus-SL IFM pour un disjoncteur

B Cordon ULP RJ45

C Cordon BCM ULP du disjoncteur

D Contact de position Débroché du disjoncteur (CD)

E Châssis du disjoncteur

F Module de communication de disjoncteur BCM ULP

G Disjoncteur débrochable avec déclencheur MicroLogic A, E ou P

H Bornier débrochable

I Contact de position Embroché du disjoncteur (CE)

J Contact de position Test du disjoncteur (CT)

K Module d'application d'entrée/sortie IO pour un disjoncteur

Configuration

Description générale

Deux configurations de l'interface IFM sont disponibles :

- Configuration automatique (mesure automatique de la vitesse ON, réglage d'usine): l'interface IFM détecte automatiquement les paramètres réseau lorsqu'elle est raccordée au réseau Modbus.
- Configuration personnalisée (mesure automatique de la vitesse OFF): les paramètre réseau peuvent être personnalisés à l'aide du logiciel EcoStruxure Power Commission, page 17.

Configuration automatique

L'adresse de l'esclave Modbus est définie en utilisant les deux roues codeuses d'adresses situées sur la face avant de l'interface IFM. L'interface IFM détecte automatiquement le débit et la parité du réseau lorsqu'elle est raccordée au réseau Modbus de liaison série. L'algorithme de mesure automatique de la vitesse teste les débits en bauds et les parités disponibles et détecte automatiquement les paramètres réseau de communication Modbus. Le maître Modbus doit envoyer au moins 25 trames sur le réseau Modbus afin de permettre à l'algorithme de mesure automatique de la vitesse d'opérer correctement.

Le format de transmission est binaire avec un bit de départ, huit bits de données, un bit d'arrêt en cas de parité paire ou impaire et deux bits d'arrêt en cas de non-parité.

Si l'algorithme de mesure automatique de la vitesse ne détecte pas les paramètres réseau, il est recommandé de suivre cette procédure :

Etape	Action
1	Configurez l'interface IFM sur l'adresse Modbus 1, page 22.
2	Envoyez une requête Read Multiple Register (code de fonction 0x03) à l'esclave 1, à l'adresse et pour le nombre de registres de votre choix.
3	Envoyez cette requête au moins 25 fois.

NOTE: en cas de modification du débit ou de la parité du réseau après la détection automatique de ces paramètres par l'interface IFM, l'interface IFM doit être redémarrée (arrêt/mise en marche) afin de détecter les nouveaux paramètres réseau.

Configuration personnalisée

L'adresse de l'esclave Modbus est définie en utilisant les deux roues codeuses d'adresses situées sur la face avant de l'interface IFM.

Désactivez l'option de détection automatique de la vitesse et réglez les paramètres de communication Modbus suivants à l'aide du logiciel EcoStruxure Power Commission, page 17 :

- Débit : 4 800, 9 600, 19 200 et 38 400 bauds.
- Parité : paire, impaire et sans parité (il est possible de sélectionner un ou deux bits d'arrêt en cas d'absence de parité).

NOTE: Il n'est pas possible de modifier l'adresse Modbus ni l'état du commutateur de verrouillage avec le logiciel EcoStruxure Power Commission.

Interface IFM avec firmware d'application hérité

L'interface IFM est livrée avec le firmware standard. Celui-ci répond à une seule adresse d'esclave Modbus définie entre 1 et 99 par les deux roues codeuses situées sur la face avant de l'interface IFM.

L'interface IFM avec le firmware standard n'est pas compatible avec les anciennes applications qui utilisent quatre adresses d'esclave Modbus :

- 1 adresse x entre 1 et 47 pour le gestionnaire de disjoncteurs
- 1 adresse x + 50 pour le gestionnaire de châssis
- 1 adresse x + 100 pour le gestionnaire de mesure
- 1 adresse x + 200 pour le gestionnaire de protection

L'interface IFM est compatible avec les anciennes applications qui utilisent quatre adresses d'esclave Modbus, après le remplacement du firmware standard par l'ancien firmware. Pour remplacer le firmware IFM, contactez votre service clientèle Schneider Electric et spécifiez la référence IFM TRV00210 ou LV434000.

NOTE:

- N'associez pas des interfaces IFM dotées du firmware standard avec des interfaces IFM dotées de l'ancien firmware sur le même réseau Modbus-SL.
- Lorsqu'une interface IFM dotée de l'ancien firmware est connectée à un module BCM ULP, son voyant (LED) d'état de trafic Modbus est allumé.
- Le module IO peut être connecté à une interface IFM dotée de l'ancien firmware pour exécuter l'application de gestion de châssis.

Test de communication

Introduction

L'utilisation du logiciel EcoStruxure Power Commission, page 17 est recommandée pour tester la communication de ligne série sur les divers disjoncteurs.

Si le PC portable muni du logiciel EcoStruxure Power Commission et connecté au réseau Modbus est capable de lire les données du module IMU, la communication est établie. Voir *l'aide en ligne du logiciel EcoStruxure Power Commission*.

Interface IFE

Contenu de ce chapitre

Présentation	32
Description du matériel	33
Schémas avec disjoncteurs ComPacT NS	38

Présentation

Vue d'ensemble

L'interface IFE permet la connexion d'une unité fonctionnelle intelligente (IMU) équipée d'un disjoncteur ComPacT, PowerPacT ou MasterPact à un réseau Ethernet. Chaque disjoncteur dispose de sa propre interface IFE et d'une adresse IP correspondante.

Types d'interface IFE

Il existe deux types d'interface IFE:

Interface Ethernet IFE pour un disjoncteur, référence LV434001

Ce type d'interface IFE est une interface Ethernet pour disjoncteurs
ComPacT, PowerPacT et MasterPact.

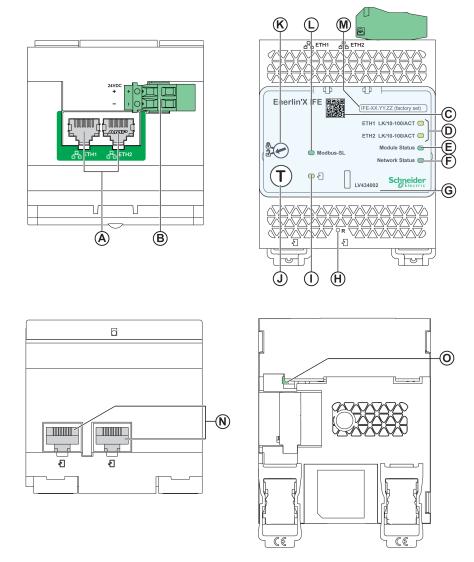
NOTE: L'interface IFE référencée LV434001 remplace complètement l'interface IFE référencée LV434010. L'interface LV434001 intègre la fonctionnalité d'horloge temps réel (RTC) et permet des connexions ULP jusqu'à 20 mètres (65,6 pieds) avec les disjoncteurs MasterPact MTZ. (L'interface LV434010 imposait une limite théorique de 5 mètres (16,4 pieds) pour toute la durée de vie de l'interface IFE).

Serveur de tableau Ethernet IFE, référence LV434002

Ce type d'interface IFE est une interface Ethernet pour disjoncteurs ComPacT, PowerPacT et MasterPact, ainsi qu'un serveur pour les appareils connectés Modbus-SL (ligne série).

NOTE: Le serveur IFE de référence LV434002 remplace complètement le serveur IFE de référence LV434011. L'interface LV434002 fournit la fonctionnalité d'horloge temps réel (RTC) et permet des connexions ULP jusqu'à 20 mètres (65,6 pieds) avec les disjoncteurs MasterPact MTZ. (Le modèle LV434011 imposait une limite théorique de 5 mètres (16,4 pieds) pour toute la durée de vie de l'interface IFE).

Fonctions de l'interface IFE


Les principales fonctionnalités de l'interface IFE sont les suivantes :

- Double port Ethernet pour une connexion en chaînage simple
- Service Web de profil d'équipement pour la détection de l'interface IFE sur le réseau local (LAN)
- Conformité au standard ULP pour la localisation de l'interface IFE sur le tableau de distribution
- Interface Ethernet pour les disjoncteurs ComPacT, PowerPacT et MasterPact
- Serveur pour les équipements Modbus-SL connectés (uniquement pour le serveur IFE de référence LV434002)
- Pages web de configuration intégrées
- Pages web de surveillance intégrées
- · Pages web de contrôle intégrées
- Fonctionnalité intégrée de notification d'alarme par e-mail pour les disjoncteurs connectés à l'interface IFE.

NOTE: Le commutateur intégré de l'interface IFE ne prend pas en charge la topologie en anneau car il est dépourvu de la fonctionnalité de protection de bouclage.

Description du matériel

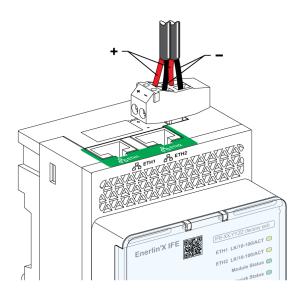
Description

- A Ethernet 1 et Ethernet 2 (ports de communication RJ45)
- B Bornier d'alimentation 24 V CC
- C Code QR pour information produit
- **D** Ethernet LED de communication
- E LED d'état du module
- F LED d'état du réseau
- G Cache transparent scellable
- H Bouton de réarmement
- I ULP LED d'état
- J Bouton Test (accessible capot fermé)
- K Commutateur de verrouillage
- L Voyant LED d'état du trafic Modbus (serveur IFE uniquement)
- M Etiquette comportant le nom du dispositif
- N Deux ports ULP RJ45
- O Connexion à la terre

Pour plus d'informations sur l'installation, consultez l'instruction de service disponible sur le site Web de Schneider Electric : QGH13473

Montage

L'interface IFE se monte sur un rail DIN. L'accessoire de liaison permet de connecter plusieurs interfaces IFM à un serveur IFE sans câblage supplémentaire.


NOTE: La fonctionnalité de liaison est uniquement disponible pour le serveur IFE de référence LV434002.

Alimentation 24 V CC

L'interface IFE doit toujours être alimentée en 24 VCC. Les interfaces IFM liées à un serveur IFE sont alimentées par le serveur IFE. Il n'est donc pas nécessaire de les alimenter séparément.

Il est conseillé d'utiliser une alimentation homologuée et approuvée UL à tension limitée/courant limité ou de classe 2 avec 24 V CC, 3 A maximum.

NOTE: Dans le cas d'un raccordement à une alimentation 24 V CC, n'utilisez que des conducteurs en cuivre.

Voyants LED de la communication Ethernet

Les voyants LED bicolores de la communication Ethernet indiquent l'état des ports Ethernet **ETH1** et **ETH2**.

Signalisation par voyant LED	Description du statut
Eteint	Pas d'alimentation au pas de liaison
Jaune fixe	10 Mbits/s, liaison établie et aucune activité
Jaune clignotant	10 Mbits/s, activité en cours
Vert fixe	100 Mbits/s, liaison établie et aucune activité
Vert clignotant	100 Mbits/s, activité en cours

LED d'état du module

Le voyant LED bicolore de l'état du module indique l'état de l'interface IFE.

Signalisation par voyant LED	Description du statut	Action
Eteint	Absence d'alimentation	Néant
Vert fixe	Interface IFE opérationnelle	Néant
Vert clignotant (allumé durant 250 ms, éteint durant 250 ms)	Page Web de contrôle masquée disponible	Néant
Vert clignotant (allumé durant 500 ms, éteint durant 500 ms)	Firmware de l'interface IFE corrompu	Contactez votre service Schneider Electric local pour obtenir de l'aide.
Rouge clignotant (allumé durant 500 ms, éteint durant 500 ms)	Interface IFE en mode dégradé	Remplacez le module ULP lors de la prochaine opération de maintenance.
Rouge fixe	Interface IFE hors service	Néant
Vert/rouge clignotant (vert durant 1 s, rouge durant 1 s)	Mise à jour de Firmware en cours	Néant
Vert/rouge clignotante (verte pendant 250 ms, rouge pendant 250 ms)	Autotest en cours	Néant

Voyant LED d'état du réseau

Le voyant LED bicolore de l'état du réseau indique l'état du réseau Ethernet.

Signalisation par voyant LED	Description du statut
Eteint	Aucune alimentation ou pas d'adresse IP
Verte fixe	Adresse IP valide
Rouge fixe	Adresse IP dupliquée
Vert/rouge clignotante (verte pendant 250 ms, rouge pendant 250 ms)	Autotest en cours
Orange fixe	Erreur dans la configuration IP

LED du trafic de ligne série Modbus

Le voyant LED jaune du trafic de ligne série Modbus indique que des messages sont en cours d'émission ou de réception sur le réseau de ligne série Modbus via le serveur IFE.

Le voyant LED est allumé lors de la transmission et de la réception des messages. Le reste du temps, le voyant LED est éteint.

NOTE: Le voyant est éteint sur l'interface IFE (référence LV434001).

Modbus Adresse

L'interface IFE accepte l'adresse Modbus de l'unité fonctionnelle intelligente (IMU) à laquelle elle est raccordée.

L'adresse Modbus est 255 et elle ne peut pas être modifiée.

Commutateur de verrouillage

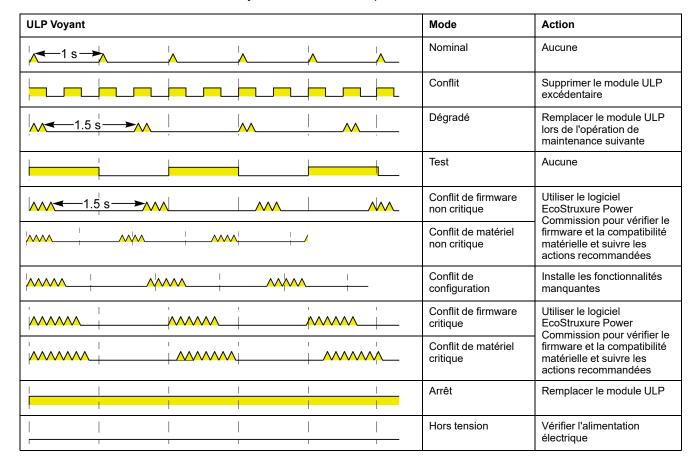
Le commutateur de verrouillage situé sur la face avant de l'interface IFE permet d'activer ou de désactiver l'envoi de commandes à distance à l'interface Ethernet sur le réseau IFE, ainsi qu'aux autres modules de l'IMU.

- Si la flèche pointe vers le cadenas ouvert (réglage d'usine), les commandes de contrôle à distance sont activées.
- Si la flèche pointe vers le cadenas fermé, les commandes de contrôle à distance sont désactivées.

La seule commande à distance qui reste activée lorsque la flèche pointe vers le cadenas fermé est la définition de l'heure absolue.

Bouton de test

Le bouton de test a deux fonctions, selon la durée de la pression qui lui est appliquée.


Plage de temps	Fonction
1 à 5 s	Teste la connexion entre tous les modules ULP pendant 15 s.
10 à 15 s	Active le mode de configuration cachée. NOTE: le mode de configuration cachée n'est pas activé si le bouton est maintenu enfoncé pendant plus de 15 s.

Bouton de réinitialisation

Lorsque le bouton de réinitialisation est maintenu enfoncé pendant 1 à 5 secondes, il force le mode d'acquisition IP sur le paramètre par défaut d'usine (DHCP).

LED d'état ULP

La LED jaune d'état ULP indique le mode du module ULP.

Schémas avec disjoncteurs ComPacT NS

Description

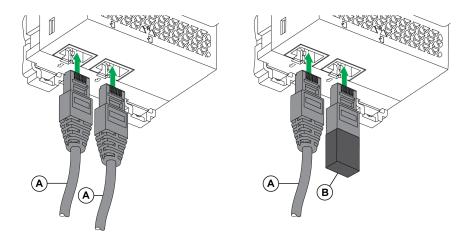
En fonction du type de disjoncteur utilisé, raccordez l'interface IFE au disjoncteur en utilisant l'une des configurations suivantes :

- Raccordement de l'interface IFE à un disjoncteur fixe à commande manuelle ComPacT NS avec un module BCM ULP.
- Raccordement de l'interface IFE à un disjoncteur débrochable ComPacT NS 630b-1600 avec un module BCM ULP et son module IO associé.

Pour plus d'informations, reportez-vous au Guide utilisateur du système ULP.

Connexion ULP

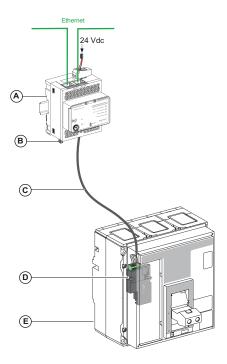
AVIS


RISQUE DE DOMMAGES MATÉRIELS

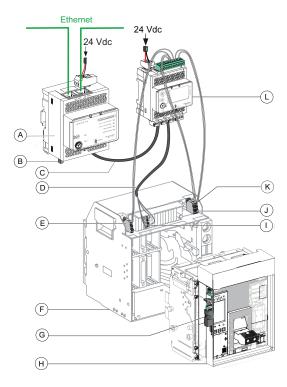
- Ne branchez jamais un dispositif Ethernet sur un port RJ45 ULP.
- Les ports RJ45 ULP de l'interface IFE sont réservés aux seuls modules ULP.
- Toute autre utilisation peut endommager l'interface IFE ou l'appareil raccordé à l'interface IFE.
- Pour vérifier si un module ULP est compatible avec les ports RJ45 ULP de l'interface IFE, reportez-vous au Guide utilisateur du système ULP.

Le non-respect de ces instructions peut provoquer des dommages matériels.

Toutes les configurations de raccordement nécessitent le cordon BCM ULP.


Lorsque le second port RJ45 ULP est inutilisé, il doit être fermé à l'aide d'une terminaison de ligne ULP.

A Cordon BCM ULP ou RJ45 ULP du disjoncteur


B ULP - terminaison de ligne

Raccordement de l'interface IFE à un disjoncteur fixe à commande manuelle ComPacT NS

- A Interface Ethernet IFE pour un disjoncteur
- B Terminaison de ligne ULP
- C Cordon BCM ULP de disjoncteur
- D Module de communication de disjoncteur BCM ULP
- E Disjoncteur fixe à commande manuelle ComPacT NS avec déclencheur MicroLogic A, E ouP

Raccordement de l'interface IFE à un disjoncteur débrochable ComPacT NS 630b-1600

A Interface Ethernet IFE pour un disjoncteur

B ULP - terminaison de ligne

C RJ45 ULP - cordon

D Cordon BCM ULP de disjoncteur

E Contact de position déconnecté de disjoncteur (CD)

F Châssis du disjoncteur

G BCM ULP Module de communication disjoncteur

H Disjoncteur débrochable avec déclencheur MicroLogic A, E ou P

I Bornier débrochable

J Contact de position embrochée du disjoncteur (CE)

K Contact de position de test de disjoncteur (CT)

L IO Module d'application d'entrée/sortie pour un disjoncteur

Protocole Modbus avec disjoncteurs ComPacT NS

Contenu de cette partie

Principe maître-esclave Modbus	42
Recommandation pour la programmation avec Modbus	
Fonctions de Modbus	
Codes d'exception Modbus	52
Protection en écriture	54
Gestion des mots de passe	55
Interface de commande	57
Exemples de commande	62
Gestion de la date	65
Tables des registres Modbus	66

Principe maître-esclave Modbus

Présentation

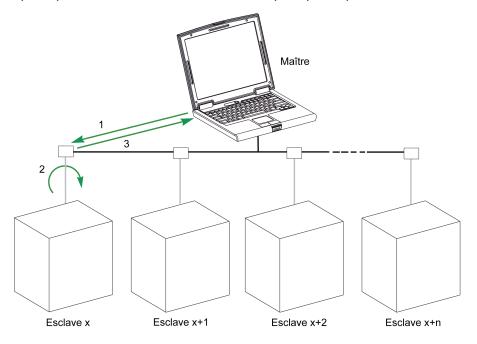
Le protocole Modbus échange des informations en utilisant un mécanisme de requête-réponse entre un maître (client) et un esclave (serveur). Le principe maître-esclave est un modèle de protocole de communication dans lequel un appareil (le maître) contrôle un ou plusieurs autres appareils (les esclaves). Un réseau Modbus standard comporte 1 maître et jusqu'à 31 esclaves.

Une description détaillée du protocole Modbus est disponible sur www.modbus. org.

Caractéristiques du principe maître-esclave

Le principe maître-esclave présente les caractéristiques suivantes :

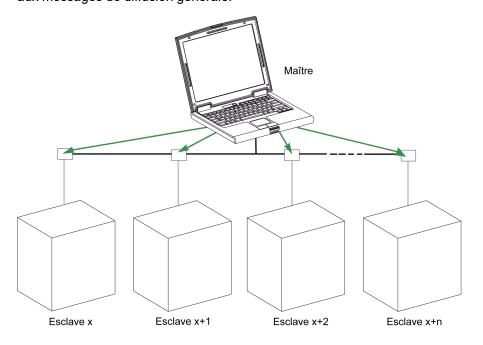
- Un seul maître à la fois est connecté au réseau.
- Seul le maître peut initier une communication et envoyer des requêtes aux esclaves.
- Le maître peut s'adresser individuellement à chaque esclave en utilisant son adresse spécifique ou simultanément à tous les esclaves via l'adresse 0.
- Les esclaves peuvent uniquement envoyer des réponses au maître.
- Les esclaves ne peuvent pas initier une communication, ni vers le maître, ni vers les autres esclaves.


Modes de communication maître-esclave

Le protocole Modbus peut échanger des informations en utilisant 2 modes de communication :

- · mode de monodiffusion
- · mode de diffusion générale

Mode de monodiffusion


En mode de monodiffusion, le maître s'adresse à un esclave en utilisant l'adresse spécifique de l'esclave. L'esclave traite la requête puis répond au maître.

- 1 Requête
- 2 Processus
- 3 Réponse

Mode de diffusion générale

Le maître peut également s'adresser à tous les esclaves en utilisant l'adresse 0. Ce type d'échange est appelé diffusion générale. Les esclaves ne répondent pas aux messages de diffusion générale.

Temps de réponse

Le temps de réponse Tr est le temps nécessaire à un esclave pour répondre à une requête envoyée par le maître :

Valeurs avec le protocole Modbus :

- Valeur type < 10 ms dans 90 % des échanges
- La valeur maximale est d'environ 700 ms. Il est donc recommandé de mettre en œuvre un délai d'attente de 1 seconde après l'envoi d'une requête Modbus.

Échange de données

Le protocole Modbus utilise 2 types de données :

- · Bit unique
- · Registre (16 bits)

Les disjoncteurs MasterPact MTZ, ComPacT NS et ComPacT NSX prennent uniquement en charge les registres.

Chaque registre possède un numéro de registre. Chaque type de données (bit ou registre) possède une adresse de 16 bits.

Les messages échangés avec le protocole Modbus contiennent l'adresse des données à traiter.

Registres et adresses

L'adresse du registre numéro n est n-1. Les tableaux détaillés figurant dans les chapitres suivants de ce document indiquent à la fois les numéros de registres (au format décimal) et les adresses correspondantes (au format hexadécimal). Par exemple, l'adresse du registre numéro 12000 est 0x2EDF (11999).

Trames

Toutes les trames échangées avec le protocole Modbus sont d'une taille maximale de 256 octets et se composent de 4 champs :

Champ	Définition	Taille	Description	
1	Numéro d'esclave	1 octet	Destination de la requête 0 : diffusion générale (tous les esclaves sont concernés) 1 à 247 : destination unique	
2	Codes de fonction	1 octet ou 2 octets	Se reporter à la description des codes de fonction, page 47	
3	Données	n registres	Données de requête ou de réponse NOTE: Le nombre de registres n est limité à 52 avec le déclencheur MasterPact MicroLogic E.	
4	Contrôle	2 octets	CRC16 (pour vérifier les erreurs de transmission)	

Recommandation pour la programmation avec Modbus

Recommendations pour la lecture de registres

Les registres des modules IMU sont disponibles via la communication Modbus dans :

- Registres des jeux de données (jeux de données standard et/ou hérités)
- · Registres des appareils :
 - Registres MicroLogic
 - Registres du module IO
 - Registres de l'interface IFM
 - Registres de l'interface IFE

Pour lire les registres :

- Lisez d'abord les registres disponibles dans les jeux de données.
 - Le jeu de données standard est recommendé car il contient davantage de données dans un format qui permet une meilleure précision.
 - Le jeu de données hérité est uniquement utilisé pour les équipements hérités.
- Puis lisez dans les registres des appareils les données qui ne sont pas disponibles dans les jeux de données.

L'avantage des jeux de données est que les informations les plus utiles de chaque module IMU sont collectées dans une table que vous pouvez lire avec deux ou trios requêtes de lecture. Chaque module met à jour les valeurs dans les registres du jeu de données à intervalles réguliers.

Le temps de réponse des requêtes dans les registres des jeux de données est plus court que le temps de réponse des requêtes dans les registres des appareils. Par conséquent, il est recommandé de lire les registres du jeu de données au lieu des registres des appareils pour améliorer les performances globales de la communication dans le système .

Mise à jour des registres

Les valeurs des registres sont mises à jour de deux façons :

- Les valeurs de mesure sont régulièrement actualisées, à une fréquence fixe.
- Les autres valeurs sont actualisées en cas de changement de valeur.

Type de registre	Mise à jour des registres
Identification	Déclenchement par remplacement d'appareil
Paramètres	Déclenchement par changement de configuration
Mesure	Actualisation à une fréquence fixe
Mesures en temps réel	Toutes les 1 seconde
Valeurs de demande de mesures en temps réel	Toutes les 1 seconde
Valeurs des harmoniques	Toutes les 3 secondes
Mesures de l'énergie	Toutes les 5 secondes
Valeurs de crête des mesures des valeurs de demande en temps réel	Toutes les 5 secondes
Valeurs minimum et maximum des mesures en temps réel	Toutes les 5 secondes
Maintenance et Diagnostic	Déclenchement par changement de date

Type de registre	Mise à jour des registres
Evénements	Déclenchement par détection d'événement
Etat de IO	Déclenchement par changement d'état

La fréquence d'actualisation des valeurs est identique pour les registres de jeux de données et les registres des appareils.

La fréquence d'actualisation permet d'optimiser les performances de la communication entre le contrôleur distant et les modules IMU.

Fonctions de Modbus

Description générale

Le protocole Modbus propose un certain nombre de fonctions qui permettent de lire ou d'écrire des données sur le réseau Modbus. Le protocole Modbus offre également des fonctions de diagnostic et de gestion de réseau.

Seules les fonctions Modbus gérées par le disjoncteur sont décrites ici.

Fonctions de lecture

Les fonctions de lecture suivantes sont disponibles :

Code de fonction	Code de sous-fonction	Nom	Description
3 (0x03)	-	Lecture de registres de maintien	Lecture de n registres de sortie ou de n registres internes.
4 (0x04)	-	Lecture de registres d'entrée	Lecture de n registres d'entrée.
43 (2x0B)	14 (0x0E)	Lecture d'identification de produit	Lecture des données d'identification de l'esclave.
43 (2x0B)	15 (0x0F)	Obtention de la date et de l'heure	Lecture de la date et de l'heure de l'esclave.

NOTE: Le nombre de registres n est limité à 52 avec le déclencheur MasterPact MicroLogic E.

Exemple de lecture de registre

Le tableau suivant indique comment lire le courant efficace sur la phase 1 (I1) dans le registre 1016. L'adresse du registre 1016 est 1016 - 1 = 1015 = 0x03F7. L'adresse Modbus de l'esclave Modbus est 47 = 0x2F.

Requête du maître		Réponse de l'esclave	
Nom de champ	Exemple	Nom de champ	Exemple
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F
Code de fonction	0x03	Code de fonction	0x03
Adresse du registre à lire (MSB)	0x03	Longueur des données en octets	0x02
Adresse du registre à lire (LSB)	0xF7	Valeur du registre (MSB)	0x02
Nombre de registres (MSB)	0x00	Valeur de registre (LSB)	2x0B
Nombre de registres (LSB)	0x01	CRC (MSB)	0xXX
CRC (MSB)	0xXX	CRC (LSB)	0xXX
CRC (LSB)	0xXX	-	•

Le contenu du registre 1016 (adresse 0x03F7) est 0x022B = 555. Le courant efficace sur la phase 1 (I1) est donc de 555 A.

Exemple de date et d'heure obtenues

Le tableau suivant indique comment obtenir la date et l'heure d'un esclave Modbus. L'adresse Modbus de l'esclave Modbus est 47 = 0x2F.

Requête du maître		Réponse de l'esclave	
Nom de champ	Exemple	Nom de champ	Exemple
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F
Code de fonction	2x0B	Code de fonction	2x0B
Code de sous-fonction	0x0F	Code de sous-fonction	0x0F
Réservé	0x00	Réservé	0x00
_	_	Date et heure	Se reporter au type de données DATETIME.

Exemple de date et d'heure définies

Le tableau suivant indique comment définir la date et l'heure d'un esclave Modbus. L'adresse Modbus de l'esclave Modbus est 47 = 0x2F. La nouvelle date est le 2 octobre 2014 et la nouvelle heure est 14:32:03:500.

NOTE: Utilisez le mode de diffusion générale (avec l'adresse Modbus de l'esclave = 0) pour définir la date et l'heure de tous les esclaves Modbus.

Requête du maître		Réponse de l'esclave	
Nom de champ	Exemple	Nom de champ	Exemple
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F
Code de fonction	0x2B	Code de fonction	0x2B
Code de sous-fonction	0x10	Code de sous-fonction	0x10
Réservé1	0x00	Réservé1	0x00
Inutilisé	0x00	Inutilisé	0x00
Année = 2014	0x0E	Année = 2014	0x0E
Mois = Octobre	0x0A	Mois = Octobre	0x0A
Jour du mois = 2	0x02	Jour du mois = 2	0x02
Heure = 14	0x0E	Heure = 14	0x0E
Minutes = 32	0x20	Minutes = 32	0x20
3 s 500 ms	0x0DAC	3 s 502 ms	0x0DAE

La réponse normale fait écho à la requête. Elle est renvoyée une fois que la date et l'heure ont été mises à jour sur l'équipement distant. Si la structure de la date et de l'heure est incorrecte, la valeur renvoyée dans le champ Date-Heure est définie sur 0 par l'équipement.

En cas de coupure de l'alimentation 24 V CC, la date et l'heure des esclaves Modbus sans batterie ne sont plus actualisées. Il est par conséquent nécessaire de régler la date et l'heure pour tous les esclaves Modbus après reprise de l'alimentation 24 V CC.

De plus, du fait de l'écart de l'horloge de chaque esclave Modbus, il est impératif de régler régulièrement l'heure absolue de tous les esclaves Modbus. La fréquence recommandée est d'au moins une fois toutes les 15 minutes.

Fonction de lecture de registres de maintien répartis

La fonction de lecture de registres de maintien répartis est disponible :

Code de fonction	Code de sous-fonction	Nom	Description
100 (0x64)	4 (0x04)	Lecture de registres de maintien répartis	Lecture de n registres non contigus.

La valeur maximale pour n est 100 mais lors de l'utilisation d'un déclencheur MasterPact MicroLogic Aou E, il est recommandé de choisir n inférieur ou égal à 21.

Grâce à la fonction de lecture de registres de maintien répartis, l'utilisateur peut :

- éviter de lire un gros bloc de registres contigus lorsque seuls quelques registres sont nécessaires.
- éviter une utilisation multiple des fonctions 3 et 4 afin de lire des registres non contigus.

Exemple de lecture de registres de maintien répartis

Le tableau suivant indique comment lire les adresses du registre 664 (adresse 0x0297) et du registre 666 (adresse 0x0299) d'un esclave Modbus. L'adresse Modbus de l'esclave Modbus est 47 = 0x2F.

Requête du maître		Réponse de l'esclave	
Nom de champ Exemple		Nom de champ	Exemple
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F
Code de fonction	0x64	Code de fonction	0x64
Longueur des données en octets	0x06	Longueur des données en octets	0x06
Code de sous-fonction	0x04	Code de sous-fonction	0x04
Numéro de transmission ⁽¹⁾	0xXX	Numéro de transmission ⁽¹⁾	0xXX
Adresse du premier registre à lire (MSB)	0x02	Valeur du premier registre lu (MSB)	0x12
Adresse du premier registre à lire (LSB)	0x97	Valeur du premier registre lu (LSB)	0x0A
Adresse du deuxième registre à lire (MSB)	0x02	Valeur du deuxième registre lu (MSB)	0x74
Adresse du deuxième registre à lire (LSB)	0x99	Valeur du deuxième registre lu (LSB)	0x0C
CRC (MSB)	0xXX	CRC (MSB)	0xXX
CRC (LSB)	0xXX	CRC (LSB)	0xXX

Fonctions d'écriture

Les fonctions d'écriture suivantes sont disponibles :

Code de fonction	Code de sous-fonction	Nom	Description
6 (0x06)	-	Preset single register	Ecriture d'un registre
16 (0x10)	_	Preset multiple registers	Ecriture de n registres
43 (2x0B)	16 (0x10)	Set date and time	Ecriture de la date et de l'heure de l'esclave.

NOTE: Le nombre de registres n est limité à 52 avec les déclencheurs MasterPact MicroLogic E.

Fonctions de diagnostic

Les fonctions de diagnostic suivantes sont disponibles :

Code de fonction	Code de sous- fonction	Nom	Description
8 (0x08)	_	Diagnostic	Gestion des compteurs de diagnostic
8 (0x08)	10 (0x0A)	Clear counters and diagnostic register	Réinitialisation de tous les compteurs de diagnostic
8 (0x08)	11 (0x0B)	Return bus message counter	Lecture du compteur des messages corrects de bus gérés par l'esclave
8 (0x08)	12 (0x0C)	Return bus communication error counter	Lecture du compteur des messages incorrects de bus gérés par l'esclave
8 (0x08)	13 (0x0D)	Return bus exception error counter	Lecture du compteur des réponses d'exception gérées par l'esclave
8 (0x08)	14 (0x0E)	Return slave message counter	Lecture du compteur des messages envoyés à l'esclave
8 (0x08)	15 (0x0F)	Return slave no response counter	Lecture du compteur des messages de diffusion générale
8 (0x08)	16 (0x10)	Return slave negative acknowledge counter	Lecture du compteur des messages envoyés à l'esclave mais sans réponse à cause du code d'exception 07 d'acquittement négatif
8 (0x08)	17 (0x11)	Return slave busy counter	Lecture du compteur des messages envoyés à l'esclave mais sans réponse à cause du code d'exception 06 de périphérique esclave occupé
8 (0x08)	18 (0x12)	Return bus overrun counter	Lecture du compteur des messages de bus incorrects dus à des erreurs de surcharge
11 (0x0B)	_	Get communication event counter	Lecture du compteur des événements Modbus

Compteurs de diagnostic

Modbus utilise des compteurs de diagnostic pour activer la gestion des erreurs et des performances. Les compteurs sont accessibles à l'aide des fonctions de diagnostic Modbus (codes de fonction 8 et 11). Les compteurs de diagnostic Modbus et le compteur d'événements Modbus sont décrits dans le tableau suivant .

Numéro du Description Nom du compteur compteur Bus message counter Compteur des messages corrects de bus gérés par l'esclave 2 Bus communication error counter Compteur des messages incorrects de bus gérés par l'esclave 3 Compteur des réponses d'exception gérées par l'esclave et des messages de Slave exception error counter diffusion générale incorrects 4 Slave message counter Compteur des messages envoyés à l'esclave 5 Slave no response counter Compteur des messages de diffusion générale 6 Compteur des messages envoyés à l'esclave mais sans réponse à cause du Slave negative acknowledge counter code d'exception 07 d'acquittement négatif Slave busy count Compteur des messages envoyés à l'esclave mais sans réponse à cause du code d'exception 06 de périphérique esclave occupé. 8 Bus character overrun counter Compteur des messages de bus incorrects dus à des erreurs de surcharge 9 Comm. event counter Compteur d'événements Modbus (ce compteur est lu avec le code de fonction

Réinitialisation des compteurs

Les compteurs de diagnostic sont réinitialisés à 0 :

- lorsque la valeur maximum 65535 est atteinte ;
- lorsqu'ils sont réinitialisés par une commande Modbus (code de fonction 8, code de sous-fonction 10);

- lorsque l'alimentation électrique est coupée ;
- lorsque les paramètres de communication sont modifiés.

Codes d'exception Modbus

Réponses d'exception

Les réponses d'exception provenant du maître (client) ou d'un esclave (serveur) peuvent être le résultat d'erreurs de traitement de données. L'un des événements suivants peut se produire après une requête du maître (client) :

- Si l'esclave (serveur) reçoit la requête du maître (client) sans erreur de communication et gère correctement la requête, il renvoie une réponse normale.
- Si l'esclave (serveur) ne reçoit pas la requête provenant du maître (client) à
 cause d'une erreur de communication, il ne renvoie pas de réponse. Le
 programme maître finit par appliquer une condition de temporisation à la
 requête.
- Si l'esclave (serveur) reçoit la requête provenant du maître (client) mais détecte une erreur de communication, il ne renvoie pas de réponse. Le programme maître finit par appliquer une condition de temporisation à la requête.
- Si l'esclave (serveur) reçoit la requête du maître (client) sans erreur de communication mais ne peut pas la traiter (par exemple, la requête consiste à lire un registre qui n'existe pas), l'esclave renvoie une réponse d'exception pour informer le maître de la nature de l'erreur.

Trame d'exception

L'esclave envoie une trame d'exception au maître pour signaler une réponse d'exception. Une trame d'exception se compose de 4 champs :

Champ	Définition	Taille	Description
1	Numéro de l'esclave	1 octet	Destination de la requête
			1–247 : destination unique
2	Code de fonction d'exception	1 octet	Code de fonction de requête + 128 (0x80)
3	Code d'exception	n octets	Voir paragraphe suivant
4	Contrôle	2 octets	CRC16 (pour vérifier les erreurs de transmission)

Codes d'exception

La trame de la réponse d'exception se compose de deux champs qui la différencient d'une trame de réponse normale :

- Le code de fonction d'exception de la réponse d'exception est égal au code de fonction de la requête originale plus 128 (0x80).
- Le code d'exception dépend de l'erreur de communication que détecte l'esclave.

Le tableau suivant décrit les codes d'exception gérés par le disjoncteur :

Code d'exception	Nom	Description
01 (0x01)	Illegal function (Fonction incorrecte)	Le code de fonction reçu dans la requête n'est pas une action autorisée pour l'esclave. Il est possible que l'esclave soit dans un état inadéquat pour traiter une requête spécifique.
02 (0x02)	Illegal data address (Adresse de données incorrecte)	L'adresse de données reçue par l'esclave n'est pas une adresse autorisée pour l'esclave.
03 (0x03)	Illegal data value (Valeur de données incorrecte)	La valeur du champ de données de la requête n'est pas une valeur autorisée pour l'esclave.

Code d'exception	Nom	Description
04 (0x04)	Slave device failure (Défaillance de l'esclave)	L'esclave ne parvient pas à réaliser une action requise à cause d'une erreur irrémédiable.
05 (0x05)	Acknowledge (Acquittement)	L'esclave accepte la requête mais un long délai est nécessaire pour la traiter.
06 (0x06)	Slave device busy (Esclave occupé)	L'esclave est occupé à traiter une autre commande. Le maître doit envoyer la requête une fois que l'esclave est disponible.
07 (0x07)	Negative acknowledgment (Acquittement négatif)	L'esclave ne peut pas traiter la requête de programmation envoyée par le maître.
08 (0x08)	Memory parity error (Erreur de parité de mémoire)	L'esclave détecte une erreur de parité dans la mémoire lorsqu'il lit la mémoire étendue.
10 (0x0A)	Gateway path unavailable (Chemin de passerelle indisponible)	La passerelle est surchargée ou n'est pas correctement configurée.
11 (0x0B)	Gateway target device failed to respond (Le périphérique passerelle cible ne répond pas)	L'esclave n'est pas présent sur le réseau.

Adresse de données incorrecte

Ce guide décrit les registres de chaque module IMU doté de la dernière révision du firmware. Lorsqu'un registre décrit dans ce guide n'est pas implémenté dans un module IMU équipé d'une révision de firmware antérieure, une réponse d'exception est renvoyée avec le code d'exception 02 (0x02) Illegal data address (Adresse de données incorrecte).

Vous pouvez mettre à niveau le firmware des modules IMU à l'aide du logiciel EcoStruxure Power Commission.

Protection en écriture

Description générale

AAVERTISSEMENT

RISQUE DE DÉCLENCHEMENT INTEMPESTIF OU D'ÉCHEC DE DÉCLENCHEMENT

Seul un personnel qualifié doit effectuer les réglages des protections.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Les modifications à distance des registres Modbus peuvent être dangereuses pour le personnel à proximité du disjoncteur ou provoquer des dommages au niveau des équipements si les paramètres de protection sont modifiés. Par conséquent, les commandes de contrôle à distance sont protégées aux niveaux matériel, page 23 et logiciel.

Protection logicielle

Pour empêcher toute modification involontaire de la configuration MicroLogic, les modifications à distance des registres Modbus sont protégées de deux manières :

- une structure de données robuste et un ensemble de registres Modbus dédiés
- · un système de mot de passe de profil utilisateur

Cette combinaison est appelée interface de commande. Si ces conditions ne sont pas remplies, un code d'erreur est généré et l'opération n'est pas exécutée. La protection matérielle est toujours prioritaire sur la protection logicielle.

Gestion des mots de passe

Description générale

L'accès distant aux données sur les déclencheurs MicroLogic et les modules ULP du IMU est protégé par un mot de passe. L'accès distant inclut :

- Réseau de communication
- Logiciel EcoStruxure Power Commission
- Afficheur FDM128
- · Pages Web IFE

Les quatre profils suivants sont définis pour l'accès à distance. Le mot de passe associé à chaque profil est différent pour chaque IMU.

- Administrateur
- Services
- Ingénieur
- Opérateur

Le mot de passe de niveau Administrateur est requis pour écrire des paramètres dans le déclencheur MicroLogic et les modules ULP de l'IMU à l'aide du logiciel EcoStruxure Power Commission ., page 17.

Chaque commande intrusive envoyée via l'interface de commande est associée à un ou plusieurs profils d'utilisateur et protégée par le mot de passe correspondant à ce profil. Le mot de passe requis pour chaque commande intrusive est indiqué dans la description de la commande.

Aucun mot de passe n'est requis pour les commandes non intrusives via l'interface de commande.

Mots de passe par défaut

▲ AVERTISSEMENT

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

Change default passwords at first use to help prevent unauthorized access to device settings, controls, and information.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Voici les mots de passe par défaut des différents profils utilisateur :

Profil utilisateur	Mot de passe par défaut
Administrateur	'0000' = 0x30303030
Services	'1111' = 0x31313131
Ingénieur	'2222' = 0x32323232
Opérateur	'3333' = 0x33333333

Modification d'un mot de passe

Il est possible de modifier un mot de passe à l'aide du logiciel EcoStruxure Power Commission, page 17.

Pour modifier le mot de passe d'un profil utilisateur, il est nécessaire de saisir le mot de passe actuellement défini pour ce profil. Vous pouvez modifier le mot de

passe de n'importe quel profil utilisateur en saisissant le mot de passe Administrateur.

Un mot de passe est constitué de 4 caractères ASCII. Il est sensible à la casse et autorise les caractères suivants :

- Chiffres entre 0 et 9
- Lettres de a à z
- Lettres de A à Z.

Mots de passe de IMU

Le déclencheur MicroLogic et les modules ULP de l'IMU doivent être protégés par les mêmes mots de passe pour chaque profil d'utilisateur.

Si vous modifiez un mot de passe à l'aide du logiciel EcoStruxure Power Commission, la modification est effectuée dans le déclencheur MicroLogic et les modules ULP de l'IMU.

Il est impératif d'attribuer les mots de passe actuels de l'IMU au nouveau module de l'IMU dans les cas suivants :

- · Ajout d'un nouveau module ULP à l'IMU
- Remplacement du déclencheur MicroLogic ou de l'un des modules ULP de l'IMLI

Utilisez le logiciel EcoStruxure Power Commission pour remplacer les mots de passe du nouveau module par les mots de passe actuels de l'IMU.

Exemple: Ajout d'un module IO dans une IMU avec un déclencheur MicroLogic et une interface IFE.

- L'IMU a des mots de passe définis par l'utilisateur pour chaque profil d'utilisateur.
- Le module IO a les mots de passe par défaut pour chaque profil d'utilisateur.

Utilisez le logiciel EcoStruxure Power Commission pour remplacer les mots de passe par défaut du module IO par les mots de passe définis par l'utilisateur de l'IMU pour chaque profil d'utilisateur.

Réinitialisation du mot de passe

En cas d'oubli ou de perte du mot de passe Administrateur de l'IMU, il est possible de rétablir le mot de passe par défaut via le logiciel EcoStruxure Power Commission, page 17 et avec l'aide du Centre de relation clients de Schneider Electric.

Interface de commande

Description générale

L'interface de commande sert à :

- envoyer des commandes distantes ;
- envoyer des commandes de contrôle à distance.

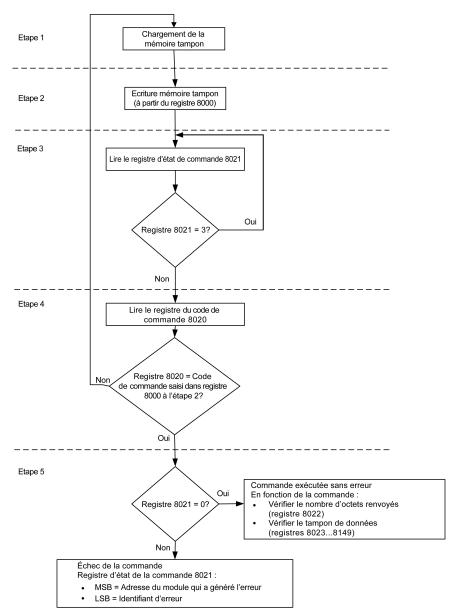
Les commandes distantes sont des commandes non intrusives. Elles ne sont pas protégées par un mot de passe et sont toujours activées.

Les commandes de contrôle à distance sont des commandes intrusives. Elles peuvent présenter un danger pour le personnel situé près du disjoncteur ou peuvent provoquer des dommages de l'équipement si les paramètres de protection sont modifiés. Par conséquent, les commandes de contrôle à distance sont :

- protégées par un mot de passe lorsqu'un mot de passe est requis dans la commande;
- protégées par la configuration :
 - avec l'interface IFM, les commandes de contrôle à distance sont activées lorsque le commutateur de verrouillage sur l'interface IFM est en position ouverte.
 - avec l'interface IFE, les commandes de contrôle à distance sont activées lorsque le commutateur de verrouillage sur l'interface IFE est en position ouverte.
 - avec l'interface EIFE, les commandes de contrôle à distance sont activées lorsque le mode de commande intrusif est déverrouillé par la configuration EIFE à l'aide du EcoStruxure Power Commission software, page 17.

Chaque commande possède un code spécifique. Par exemple, le code de commande 904 correspond à la commande d'ouverture du disjoncteur.

Exécution d'une commande


Suivez ces étapes pour exécuter une commande :

Étape	Action
1	Charger une mémoire tampon.
2	Écrire ce tampon avec une requête d'écriture (fonction Modbus 16) en commençant au registre 8000.
3	Lire le registre 8021 d'état de la commande et attendre tant que son contenu indique que la commande est encore en cours d'exécution (0x0003).
4	Lire le registre de code de commande 8020 : si le contenu du registre 8020 est le code de commande saisi dans le registre 8000 à l'étape 2, passer à l'étape suivante. si le contenu du registre 8020 est différent du code de commande saisi dans le registre 8000 à l'étape 2, recommencer à l'étape 1.
5	 Lire l'identifiant du code d'erreur dans les bits de poids faible (LSB) du registre 8021 : Si le LSB ≠ 0, la commande a échoué. Vérifier le code d'erreur pour en comprendre la cause (voir le paragraphe suivant). Par exemple, si le registre 8021 renvoie la valeur 4609 (0x1201), le code d'erreur est 1, ce qui signifie que le mot de passe n'est pas correct (droits d'utilisateur insuffisants). Si le LSB = 0, la commande s'est exécutée sans erreur.

NOTE: L'application Modbus doit attendre la fin de l'exécution d'une commande avant d'envoyer la commande suivante. En l'absence de réponse, l'application Modbus peut renvoyer la commande. Dans ce cas, la première commande est automatiquement annulée.

Diagramme de commande

Le diagramme ci-dessous indique les étapes à suivre pour exécuter une commande :

Structure des données de commande

L'interface de commande utilise les registres 8000 à 8149 :

- Les paramètres d'entrée d'une commande sont écrits dans les registres 8000 à 8015. Les registres 8016 à 8019 sont réservés.
- Les données renvoyées après l'exécution de la commande sont écrites dans les registres 8020 à 8149.

Les paramètres d'entrée d'une commande sont détaillés dans le tableau suivant :

Adresse	Registre	Description	Commentaires
0x1F3F	8000	Code de commande	Ecrire dans ce registre déclenche l'exécution de la commande en utilisant les paramètres des registres suivants.
0x1F40	8001	Longueur des paramètres	Nombre d'octets utilisés pour les paramètres incluant celui-ci (de 10 à 30). Cette valeur est fournie pour chaque commande.
0x1F41	8002	Destination	Une valeur constante fournie pour chaque commande.

Adresse	Registre	Description	Commentaires
			Réglage d'usine : 0x0000
0x1F42	8003	Type de sécurité	Une valeur constante fournie pour chaque commande:
			0 pour les commandes non intrusives non protégées par mot de passe ;
			1 pour les commandes intrusives protégées par mot de passe.
0x1F43	8004	Mot de passe	Le mot de passe se compose de 4 octets ASCII.
0x1F44	8005		Le mot de passe à utiliser dépend de la commande.
			Cette information est fournie pour chaque commande.
0x1F45-0x1F4E	8006-8015	Paramètres supplémentaires	Les paramètres supplémentaires définissent le mode d'exécution de la commande. Certaines commandes ne possèdent aucun paramètre supplémentaire.
0x1F4F	8016	Réservé	Doit être défini sur 0 (réglage d'usine).
0x1F50	8017	Réservé	Doit être défini sur 8019 (réglage d'usine).
0x1F51	8018	Réservé	Doit être défini sur 8020 (réglage d'usine).
0x1F52	8019	Réservé	Doit être défini sur 8021 (réglage d'usine).

Les données renvoyées après l'exécution de la commande sont détaillées dans le tableau suivant :

Adresse	Registre	Description	Commentaires
0x1F53	8020	Dernier code de commande	Lorsque la commande a été exécutée, ce registre conserve le dernier code de commande.
0x1F54	8021	Etat de la commande	Lorsque la commande quitte l'état occupé, ce registre contient le code de fin.
0x1F55	8022	Taille de la mémoire tampon de données	Nombre d'octets renvoyés.
0x1F56-0x1FD4	8023-8149	Mémoire tampon de données	Valeurs retournées. Ce registre est vide si le registre précédent est 0.

État de la commande

Lorsque la commande réussit, son état est 0.

Lorsque la commande est en cours, son état est 3.

Lorsque la commande génère une erreur, son registre d'état contient :

• LSB : code de l'erreur

• MSB : adresse du module qui génère l'erreur

Module renvoyant le résultat de la commande

Le tableau ci-dessous répertorie les adresses des modules :

Adresse du module	Module
1 (0x01)	Module de maintenance UTA
2 (0x02)	Afficheur ULP FDM121 pour un disjoncteur
3 (0x03)	Interface Modbus-SL IFM pour un disjoncteur
17 (0x11)	Module de contrôle d'état du disjoncteur BSCM pour ComPacT NSX
18 (0x12)	Module de communication disjoncteur pour BCM ULP ComPacT NS
20 (0x14)	Déclencheur MicroLogic ComPacT NSX
21 (0x15)	Unité de contrôle MicroLogic de MasterPact MTZ

Adresse du module	Module	
32 (0x20)	Module 1 d'application d'entrée/sortie IO pour un disjoncteur	
33 (0x21)	Module 2 d'application d'entrée/sortie IO pour un disjoncteur	
34 (0x22)	Interface Ethernet IFE pour un disjoncteur Serveur de tableau Ethernet IFE	

NOTE: Les déclencheurs MicroLogic des disjoncteurs ComPacT NS n'ont pas d'adresse de module IMU.

Résultat de la commande

Le tableau suivant répertorie les codes correspondant au résultat de la commande.

Code	Description
0 (0x00)	Commande réussie
1 (0x01)	Droits utilisateur insuffisants (mot de passe incorrect)
2 (0x02)	Violation d'accès (le commutateur de verrouillage IFM est verrouillé, page 23 ou le commutateur de verrouillage IFE est verrouillé, page 36 ou le mode de commande intrusif est verrouillé).
3 (0x03)	Accès en lecture impossible
4 (0x04)	Accès en écriture impossible
5 (0x05)	Impossible d'exécuter le service (commutateur de verrouillage IFM verrouillé)
6 (0x06)	Mémoire insuffisante
7 (0x07)	Mémoire attribuée insuffisante
8 (0x08)	Ressource indisponible
9 (0x09)	Ressource inexistante
10 (0x0A)	Ressource existante
11 (0x0B)	Ressource hors service
12 (0x0C)	Accès hors de la mémoire disponible
13 (0x0D)	Chaîne trop longue
14 (0x0E)	Mémoire tampon insuffisante
15 (0x0F)	La mémoire tampon est trop volumineuse
16 (0x10)	Argument d'entrée hors limites
17 (0x11)	Niveau de sécurité demandé non pris en charge
18 (0x12)	Composant demandé non pris en charge
19 (0x13)	Commande non prise en charge
20 (0x14)	Argument d'entrée incluant une valeur non prise en charge
21 (0x15)	Erreur interne pendant la commande
22 (0x16)	Délai d'expiration pendant la commande
23 (0x17)	Erreur de somme de contrôle pendant la commande
24 (0x18)	Destination non prise en charge
151 (0x97)	Disjoncteur déclenché, réinitialiser avant les commandes
152 (0x98)	Le disjoncteur est déjà fermé
153 (0x99)	Le disjoncteur est déjà ouvert
154 (0x9A)	Disjoncteur déjà réinitialisé
155 (0x9B)	Actionneur en mode manuel

Code	Description
156 (0x9C)	Actionneur absent
157 (0x9D)	Configuration ASIC incorrecte
158 (0x9E)	Commande précédente en cours d'exécution
159 (0x9F)	Interdit de réinitialiser la commande
160 (0xA0)	Mode d'inhibition sur
169 (0xA9)	Déjà à l'état demandé
170 (0xAA)	Impossible d'attribuer des valeurs de présélection aux compteurs
171 (0xAB)	Commande de sortie rejetée, déjà attribuée
172 (0xAC)	Emetteur non autorisé à effectuer la commande
173 (0xAD)	Mode non pertinent avec la commande demandée
174 (0xAA)	La clé de session n'est pas valide
175 (0xAF)	En dehors de la session
176 (0xB0)	Session déjà ouverte
177 (0xB1)	Aucune session ouverte
178 (0xB2)	Aucun paramètre valide n'a été envoyé
180 (0xB4)	Composant sans fil non démarré
190 (0xBE)	Lire et obtenir une valeur incorrecte
191 (0xBF)	Licence non installée

Commande non prise en charge

Ce guide décrit les commandes disponibles pour chaque module IMU doté de la dernière version de micrologiciel. Lorsqu'une commande décrite dans ce guide n'est pas implémentée dans un module IMU équipé d'une version de micrologiciel antérieure, l'état de commande est renvoyé avec le code d'exception 19 (0x13) : commande non prise en charge.

Vous pouvez mettre à jour le micrologiciel des modules IMU à l'aide de EcoStruxure Power Commission.

Exemples de commande

Ouvrir le disjoncteur

Le tableau suivant décrit comment demander au dispositif maître distant d'envoyer une commande distante au module de communication du disjoncteur BCM ULP afin d'ouvrir le disjoncteur. La commande en elle-même n'a pas de paramètres.

Étape	Action								
1	Charger une mémoire tampon de 20 registres (mots n°0 à 19).								
	Charger dans le mot n°0 la valeur 904, code correspondant à la commande d'ouverture du disjoncteur.								
	 Charger dans le mot n°1 la valeur 10, longueur des paramètres d'entrée. La commande en elle-même n'a pas de paramètres, 10 est la longueur de la partie fixe. 								
	 Charger dans le mot n°2 la valeur 4609 (0x1201), la destination. Cette valeur est une constante de la commande. Elle est donnée dans la description de la commande. 								
	Charger dans le mot n°3 la valeur 1.								
	 Charger dans le mot n°4 et le mot n°5 les 4 octets ASCII du mot de passe de l'administrateur ou de l'opérateur. En supposant que ce mot de passe est « ABcd », charger la valeur 16706 (0x4142) dans le mot n°4 et la valeur 25444 (0x6364) dans le mot n°5. 								
	Charger dans les mots n°6 à 16 la valeur 0.								
	Charger dans le mot n°17 la valeur 8019, une constante de configuration de la commande.								
	Charger dans le mot n°18 la valeur 8020, une constante de configuration de la commande.								
	Charger dans le mot n°19 la valeur 8021, une constante de configuration de la commande.								
2	Ecrire cette mémoire tampon à l'aide d'une requête d'écriture (fonction Modbus 16) de 20 registres, en commençant au registre 8000.								
3	Lire le registre 8021 d'état de la commande et attendre que son contenu indique que la commande est encore en cours d'exécution (0x0003). Si l'état de la commande ne change pas après un délai d'attente (1 s), vérifier la connexion Modbus.								
4	Lire le registre d'état de commande 8020 :								
	 si le contenu du registre 8020 est le code de commande saisi dans le registre 8000 à l'étape 2, passer à l'étape suivante. 								
	• si le contenu du registre 8020 est différent du code de commande saisi dans le registre 8000 à l'étape 2, recommencer à l'étape 1.								
5	Lire l'identifiant du code d'erreur dans les bits de poids faible (LSB) du registre 8021 :								
	• Si le LSB ≠ 0, la commande a échoué. Vérifier le code d'erreur pour en comprendre la cause (voir le paragraphe suivant). Par exemple, si le registre 8021 renvoie la valeur 4609 (0x1201), le code d'erreur est 1, ce qui signifie que le mot de passe n'est pas correct (droits d'utilisateur insuffisants).								
	Si le LSB = 0, la commande s'est exécutée sans erreur.								

Réinitialiser les mesures d'énergie

Le tableau suivant décrit comment envoyer une commande au module de communication du disjoncteur BCM ULP pour réinitialiser les mesures d'énergie minimum/maximum. La commande en elle-même a un seul paramètre.

Étape	Action							
1	Charger une mémoire tampon de 20 registres (mots n°0 à 19).							
	 Charger dans le mot n°0 la valeur 46728, code correspondant à la commande de réinitialisation du minimum/ maximum. 							
	 Charger dans le mot n°1 la valeur 12, longueur des paramètres d'entrée. La commande en elle-même a un paramètre, ajouter 2 octets à 10, qui est la longueur de la partie fixe. 							
	Charger dans le mot n°2 la valeur 4609 (0x1201), la destination. Cette valeur est une constante de la commande. Elle est donnée dans la description de la commande.							
	Charger dans le mot n°3 la valeur 1.							
	Charger dans le mot n°4 et le mot n°5 les 4 octets ASCII du mot de passe de l'administrateur ou de l'opérateur. En supposant que ce mot de passe est « PW57 », charger la valeur 20599 (0x5077) dans le mot n°4 et la valeur 13623 (0x3537) dans le mot n°5.							
	Charger dans le mot n°6 la valeur 512 (bit 9 réglé sur un). Cette valeur demande que la mesure d'énergie minimale/ maximale soit réinitialisée.							
	Charger dans les mots n°7 à 16 la valeur 0.							
	Charger dans le mot n°17 la valeur 8019, une constante de configuration de la commande.							
	Charger dans le mot n°18 la valeur 8020, une constante de configuration de la commande.							
	Charger dans le mot n°19 la valeur 8021, une constante de configuration de la commande.							
2	Ecrire cette mémoire tampon à l'aide d'une requête d'écriture (fonction Modbus 16) de 20 registres, en commençant au registre 8000.							
3	Lire le registre 8021 d'état de la commande et attendre que son contenu indique que la commande est encore en cours d'exécution (0x0003). Si l'état de la commande ne change pas après un délai d'attente (1 s), vérifier la connexion Modbus.							
4	Lire le registre d'état de commande 8020 :							
	si le contenu du registre 8020 est le code de commande saisi dans le registre 8000 à l'étape 2, passer à l'étape suivante.							
	si le contenu du registre 8020 est différent du code de commande saisi dans le registre 8000 à l'étape 2, recommencer à l'étape 1.							
5	Lire l'identifiant du code d'erreur dans les bits de poids faible (LSB) du registre 8021 :							
	• Si le LSB ≠ 0, la commande a échoué. Vérifier le code d'erreur pour en comprendre la cause (voir le paragraphe suivant). Par exemple, si le registre 8021 renvoie la valeur 4609 (0x1201), le code d'erreur est 1, ce qui signifie que le mot de passe n'est pas correct (droits d'utilisateur insuffisants).							
	Si le LSB = 0, la commande s'est exécutée sans erreur.							

Read Date and Time (Lire la date et l'heure)

Le tableau suivant décrit comment envoyer une commande à l'interface IFM pour lire la date et l'heure. La commande en elle-même n'a pas de paramètres. La date et l'heure sont renvoyées dans une mémoire tampon.

Étape	Action								
1	Charger une mémoire tampon de 20 registres (mots n°0 à 19).								
	Charger dans le mot n°0 la valeur 768, code correspondant à la commande de lecture de la date/heure.								
	 Charger dans le mot n°1 la valeur 10, longueur des paramètres d'entrée. La commande en elle-même n'a pas de paramètres, la longueur 10 est la longueur de la partie fixe. 								
	 Charger dans le mot n°2 la valeur 768 (0x0300), la destination. Cette valeur est une constante de la commande. Elle est donnée dans la description de la commande. 								
	Charger dans le mot n°3 la valeur 0.								
	Charger dans les mots n°4 et n°5 la valeur 0x0000 (aucun mot de passe requis).								
	Charger dans les mots n°6 à 16 la valeur 0.								
	Charger dans le mot n°17 la valeur 8019, une constante de configuration de la commande.								
	Charger dans le mot n°18 la valeur 8020, une constante de configuration de la commande.								
	Charger dans le mot n°19 la valeur 8021, une constante de configuration de la commande.								
2	Ecrire cette mémoire tampon à l'aide d'une requête d'écriture (fonction Modbus 16) de 20 registres, en commençant au registre 8000.								
3	Lire le registre 8021 d'état de la commande et attendre que son contenu indique que la commande est encore en cours d'exécution (0x0003). Si l'état de la commande ne change pas après un délai d'attente (1 s), vérifier la connexion Modbus.								
4	Lire le registre d'état de commande 8020 :								
	 si le contenu du registre 8020 est le code de commande saisi dans le registre 8000 à l'étape 2, passer à l'étape suivante. 								

Étape	Action								
	si le contenu du registre 8020 est différent du code de commande saisi dans le registre 8000 à l'étape 2, recommencer à l'étape 1.								
5	Lire l'identifiant du code d'erreur dans les bits de poids faible (LSB) du registre 8021 :								
	 Si le LSB ≠ 0, la commande a échoué. Vérifier le code d'erreur pour en comprendre la cause (voir le paragraphe suivant). Par exemple, si le registre 8021 renvoie la valeur 783 (0x030F), le code d'erreur est alors 15 (0x0F), ce qui signifie que l'argument d'entrée est hors plage (trop de paramètres). 								
	Si le LSB = 0, la commande s'est exécutée sans erreur.								
6	S'il n'y a pas d'erreurs, lire la longueur de la mémoire tampon des données dans le registre 8022. Sa valeur doit être égale à 8 pour cette commande.								
7	Dans la mémoire tampon de données :								
	le registre 8023 indique le mois dans les bits de poids fort (MSB), le jour est dans les bits de poids faible (LSB).								
	le registre 8024 indique le décalage en année dans les MSB (ajoutez 2000 pour connaître l'année) et l'heure dans les LSB.								
	le registre 8025 indique les minutes dans les MSB, les secondes sont dans les LSB.								
	le registre 8026 indique les millisecondes.								

Gestion de la date

Introduction

Chaque module de l'IMU utilise la date de ce dernier pour horodater les événements et les registres d'historique.

La mise à jour de la date des modules de l'IMU s'effectue en 2 étapes :

- Synchronisation externe : le maître Modbus synchronise l'interface IFM ou IFE.
- 2. Synchronisation interne : l'interface IFM ou IFE synchronise tous les modules ULP raccordés à l'unité IMU.

Synchronisation externe

Trois méthodes permettent d'effectuer une synchronisation externe de l'interface IFM ou IFE :

- Manuellement, à l'aide du logiciel EcoStruxure Power Commission, page 17.
- Par programmation du maître Modbus, avec :
 - soit la fonction Modbus de définition de la date et de l'heure, code de fonction 43-16, page 49.
 - soit la commande d'interface de réglage de l'heure absolue via l'interface IFM ou IFE.
- · Automatiquement:
 - · Avec l'interface IFE configurée en mode SNTP.

L'interface de communication est considérée comme synchronisée de manière externe si la dernière synchronisation a eu lieu au cours des deux dernières heures.

Synchronisation interne

Lorsque l'interface IFM ou IFE reçoit la date et l'heure, elle diffuse celles-ci à tous les modules ULP raccordés à l'unité IMU.

Tables des registres Modbus

Description générale

Les chapitres suivants décrivent les registres Modbus du déclencheur MicroLogic et les registres Modbus des Modbus qui y sont connectés. Ces registres fournissent des informations qui peuvent être lues, comme des mesures électriques, la configuration de la protection et des informations de contrôle. L'interface de commande permet à l'utilisateur de modifier ces registres de façon contrôlée.

Les règles de présentation des registres Modbus sont les suivantes :

- Pour chaque module, les registres sont regroupés dans des tables affichant des informations logiquement liées au module associé :
 - MicroLogic (déclencheur), page 117
 - BCM ULP (module), page 179
 - IO (module), page 198
 - IFM (interface), page 239
 - IFE (interface), page 251
- · Dans le cas de certains modules, les fichiers sont décrits séparément :
 - MicroLogic (déclencheur), page 163
 - BCM ULP (module), page 191
- Pour chaque module, les commandes sont décrites séparément :
 - MicroLogic (déclencheur), page 171
 - BCM ULP (module), page 194
 - IO (module), page 227
 - IFM (interface), page 245
 - IFE (interface), page 258

Pour rechercher un registre, utilisez la liste ordonnée des registres avec référence croisée vers la page où ces registres sont décrits, page 264.

Format des tables

Les tables de registre se composent des colonnes suivantes :

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description

- Adresse : une adresse de registre de 16 bits sous forme de nombre hexadécimal. L'adresse correspond aux données utilisées dans la trame Modbus
- **Registre** : un numéro de registre de 16 bits sous forme de nombre décimal (registre = adresse + 1).
- L/E : état de lecture ou d'écriture du registre
 - · L: le registre peut être lu en utilisant les fonctions Modbus.
 - E : le registre peut être écrit en utilisant les fonctions Modbus.
 - L/E : le registre peut être lu et écrit en utilisant les fonctions Modbus.
 - LC : le registre peut être lu en utilisant l'interface de commande.
 - EC : le registre peut être écrit en utilisant l'interface de commande.

 X: le facteur d'échelle. Une échelle de 10 signifie que le registre contient la valeur multipliée par 10. La valeur réelle est donc la valeur du registre divisée par 10.

Exemple:

Le registre 1054 contient la fréquence du système, page 121. L'unité est le Hz et le facteur d'échelle est 10.

Si le registre renvoie 503, cela signifie que la fréquence du système est 503/10 = 50,3 Hz.

- Unité : unité de mesure de l'information.
- Type: type de données de codage (voir la description des types de données ci-dessous).
- **Plage** : valeurs permises pour cette variable, généralement un sousensemble de ce que permet le format.
- A/E/P: type de mesure du déclencheur MicroLogic.
 - type A (ampèremètre) : mesures du courant
 - type E (énergie): mesures de courant, de tension, de puissance et d'énergie
 - Type P (puissance): mesures de courant, de tension, de puissance, d'énergie et protection avancée
- Description: fournit des informations sur le registre et les restrictions qui s'appliquent.

Types de données

Types de données	Description	Plage
INT16U	Entier de 16 bits non signé	0 à 65535
INT16	Entier de 16 bits signé	-32768 à +32767
INT32U	Entier de 32 bits non signé	0 à 4 294 967 295
INT32	Entier de 32 bits signé	-2 147 483 648 à +2 147 483 647
INT64U	Entier de 64 bits non signé	0 à 18 446 744 073 709 600 000
INT64	Entier de 64 bits signé	- 9 223 372 036 854 775 808 à + 9 223 372 036 854 775 807
SFIXPT	Entier de 16 bits signé à virgule fixe, page 68	-32768 à +32767
FLOAT32	Entier de 32 bits signé à virgule flottante	2-126 (1.0) à 2127 (2 - 2-23)
CHAÎNE D'OCTETS	Chaîne de texte	1 octet par caractère
MOD10000	Opération modulo, page 69	-
DATE	Date et heure, page 69	-
XDATE	Identique à DATE avec un quatrième registre INT16U pour les millisecondes, page 69	-
DATETIME	Date et heure au format CEI 60870-5. , page 70	-
ULP DATE	Date et heure au format ULP DATE. , page 71	_

Format big-endian

Les variables INT32, INT32U, INT64 et INT64U sont stockées au format bigendian : le registre de poids fort est transmis d'abord, celui de poids faible ensuite.

Les variables INT32, INT32U, INT64 et INT64U sont constituées de variables INT16U.

Voici les formules de calcul de la valeur décimale de ces variables :

- INT32: (0-bit31)x2³¹ + bit30x2³⁰ + bit29x2²⁹ + ...bit1x2¹ + bit0x2⁰
- INT32U: bit31x2³¹ + bit30x2³⁰ + bit29x2²⁹ + ...bit1x2¹ + bit0x2⁰
- INT64: $(0-bit63)x2^{63} + bit62x2^{62} + bit61x2^{61} + ...bit1x2^{1} + bit0x2^{0}$
- INT64U: bit63x2⁶³ + bit62x2⁶² + bit61x2⁶¹ + ...bit1x2¹ + bit0x2⁰

Exemple 1:

L'énergie active totale du jeu de données standard est une variable INT64 codée dans les registres 32096 à 32099.

Si les valeurs des registres sont :

- registre 32096 = 0
- registre 32097 = 0
- registre 32098 = 0x0017 ou 23
- registre 32099 = 0x9692 ou 38546 comme variable INT16U et -26990 comme variable INT16 (utilisez la valeur INT16U pour calculer la valeur de l'énergie active totale).

L'énergie active totale est égale à $0x2^{48} + 0x2^{32} + 23x2^{16} + 38546x2^{0} = 1545874$ Wh.

Exemple 2:

L'énergie réactive du jeu de données hérité est une variable INT32 codée dans les registres 12052 à 12053.

Si les valeurs des registres sont :

- registre 12052 = 0xFFF2 = 0x8000 + 0x7FF2 ou 32754
- registre 12053 = 0xA96E ou 43374 comme variable INT16U et -10606 comme variable INT16 (utilisez la valeur INT16U pour calculer la valeur de l'énergie réactive).

L'énergie réactive est égale à $(0-1)x2^{31} + 32754x2^{16} + 43374x2^{0} = -874130$ kVARh.

Type de données : SFIXPT

La plage de valeurs autorisées pour ces données dépend du facteur d'échelle.

Le tableau suivant présente des exemples d'évolution de la plage de valeurs du registre SFIXPT en fonction du facteur d'échelle :

Si le facteur d'échelle est égal à	Alors la plage de valeurs est égale à
1	-32768 à +32767
100	-327,68 à +327,67
1 000	-32,768 à +32,767

Type de données : FLOAT32

Le type de données FLOAT32 est représenté par le format simple précision IEEE 754 (norme IEEE pour l'arithmétique binaire en virgule flottante). Une valeur N est calculée de la manière suivante :

 $N = (-1)^S \times 2^{E-127} \times (1+M)$

Coefficient	Signification	Description	Nombre de bits
S	Signe	Définit le signe de la valeur :	1 bit
		0 = valeur positive	
		1 = valeur négative	
Е	Exposant	Excédent de 127 ajouté sous forme d'entier en valeur binaire. 8 bits	
		Lorsque 0 < E < 255, l'exposant réel est : e = E - 127.	
М	Mantisse	Magnitude, significande binaire normalisé	23 bits

Exemple:

avec:

- S = 1
- E = 01111111 = 127
- $N = (-1) \times 2^0 \times (1+0.5) = -1.5$

Type de données : MOD10000

MOD10000 correspond à n + 1 registres au format INT16. Chaque registre contient un entier de -9999 à 9999. Une valeur V représentant n + 1 registres en format MOD10000 est calculée comme suit :

V = sum(R[x] + R[x+1] x 10000 +...+ R[x+n] x 10000ⁿ), où R[x] est la valeur du numéro du registre x.

Par exemple, pour calculer l'énergie active Ep codée dans 4 registres :

- registre n°2000 = 123 donc R[x = 2000] = 123
- registre n°2001 = 4567
- registre n°2002 = 89
- registre 2003 = 0

Donc Ep = R[2000] + R[2001] x 10000^1 + R[2002] x 10000^2 + R[2003] x 10000^3

- = 123 + 4567 x 10000 + 89 x 10000² + 0
- = 8 945 670 123 kWh

Types de données : DATE et XDATE

Ce tableau présente les types de données DATE (registres 1 à 3) and XDATE (registres 1 à 4) :

Registre	Туре	Bit	Plage	Description
1	INT16U	0-7	0x01–0x1F	Jour
		8-14	0x01-0x0C	Mois
		15	0-1	Qualité de la date et de l'heure Si le bit 15 est défini, la date et l'heure peuvent être incorrectes.
				2 possibilités sont à étudier :
2	INT16U	0-7	0x00-0x17	Heures
		8-15	0x50-0xC7	Année

Registre	Туре	Bit	Plage	Description
				 0x50 (80) à 0x63 (99) correspond aux années 1980 à 1999 0x64 (100) à 0xC7 (199) correspond aux années 2000 à 2099 Par exemple, 0x70 (112) correspond à l'année 2012.
3	INT16U	0-7	0x00-0x3B Secondes	
		8-15	0x00-0x3B	Minutes
4	INT16U	0-15	0x0000-0x03E7	Complément en millisecondes (disponible uniquement au format XDATE)

Par exemple, si la date actuelle du module BCM ULP codée dans 4 registres est :

- registre 679 = 0x0513
- registre 680 = 0x700A
- registre 681 = 0x222E
- registre 682 = 0x0358

Alors la date et l'heure actuelles du module BCM ULP sont le 19/05/2012 (19 mai 2012) à 10 heures, 34 minutes, 46 secondes et 856 millisecondes.

Car:

- 0x0513
 - \circ 0x05 = 5 (mois)
 - \circ 0x13 = 19 (jours)
- 0x700A
 - 0x70 = 112 (années)
 - \circ 0x0A = 10 (heures)
- 0x222E
 - 0x22 = 34 (minutes)
 - 0x2E = 46 (secondes)
- 0x0358 = 856 (millisecondes)

Type de données: DATETIME

DATETIME est un type de données utilisé pour coder la date et l'heure définies par la norme IEC 60870-5.

Registre	Туре	Bit	Plage	Description
1	INT16U	0-6	0x00-0x7F	Année :
				0x00 (00) à 0x7F (127) correspond aux années 2000 à 2127.
				Par exemple, 0x0D (13) correspond à l'année 2013.
		7-15	_	Réservé
2	INT16U	0-4	0x01–0x1F	Jour
		5-7	_	Réservé
		8-11	0x00-0x0C	Mois
		12-15	_	Réservé
3	INT16U	0-5	0x00-0x3B	Minutes
		6-7	_	Réservé
		8-12	0x00-0x17	Heures
		13-15	_	Réservé
4	INT16U	0-15	0x0000-0xEA5F	Millisecondes

Qualité des horodatages DATETIME

La qualité des horodatages codés avec le type de données DATETIME peut être indiquée dans le registre qui suit les 4 registres de l'horodatage. Dans ce cas, la qualité de l'horodatage est codée comme suit :

Bit	Description					
0-11	Réservé					
12	Synchronisée de façon externe : • 0 = Non valide • 1 = Valide					
13	Synchronisée : • 0 = Non valide • 1 = Valide					
14	Date et heure définies : • 0 = Non valide • 1 = Valide					
15	Réservé					

Qualité des bits dans les registres

La qualité de chaque bit d'un registre codé comme type de données INT16U en tant qu'énumération de bits peut être indiquée dans le registre précédent.

Exemple:

La qualité de chaque bit du registre 32001, état du disjoncteur, est donnée dans le registre précédent, 32000.

La qualité des données correspondant au bit 0 du registre 32001, Contact de signalisation d'état OF, est donnée dans le bit 0 du registre 32000 :

- bit 0 du registre 32000 = qualité de signalisation d'état OF
- bit 0 du registre 32001 = contact de signalisation d'état OF

Si	Alors
Le bit 0 du registre 32000 = 1 ET le bit 0 du registre 32001 = 0	Le contact OF indique que l'appareil est ouvert.
Le bit 0 du registre 32000 = 1 ET le bit 0 du registre 32001 = 1	Le contact OF indique que l'appareil est fermé.
Le bit 0 du registre 32000 = 0	La signalisation de contact OF est incorrecte.

Type de données: ULP DATE

ULP DATE est un type de données utilisé pour coder la date et l'heure. Cette table présente le type de données ULP DATE.

Registre	Туре	Bit	Plage	Description
1	INT32U	_	- 0x00000000- 0xFFFFFFF	Nombre de secondes depuis le 1er janvier 2000
2				UXFFFFFF
3	INT16U	_	_	Complément en millisecondes
		0-9	_	Code les millisecondes
		10-11	_	Inutilisé
		12	0–1	Etat de la synchronisation externe de l'interface de communication IFM ou IFE
				0 = l'interface de communication n'a pas subi de synchronisation externe au cours des 2 dernières heures.

Registre	Туре	Bit	Plage	Description
				1 = l'interface de communication a subi une synchronisation externe au cours des 2 dernières heures.
		13	0–1	État de la synchronisation interne du module ULP 0 = le module ULP n'a pas subi de synchronisation interne. 1 = le module ULP a subi une synchronisation interne.
		14	0–1	Date absolue définie depuis la dernière mise sous tension 0 = non 1 = oui
		15	-	Réservé

Compteur de date du module ULP

La date au format ULP DATE est comptée en nombre de secondes depuis le 1er janvier 2000.

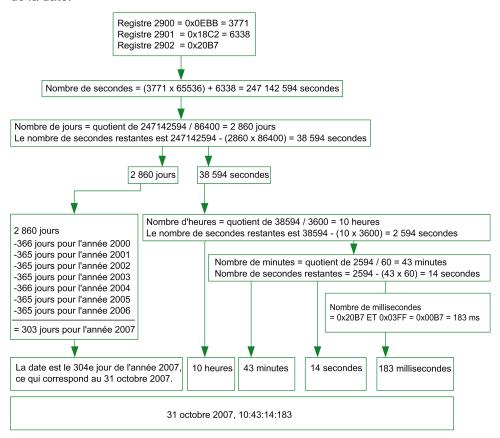
En cas de coupure d'alimentation d'un module IMU, le compteur de date est réinitialisé et redémarre au 1er janvier 2000.

Si une synchronisation externe se produit après une coupure d'alimentation, le compteur de date est mis à jour et convertit la date de synchronisation au nombre exact de secondes depuis le 1er janvier 2000.

Principe de conversion de la date ULP

Pour convertir la date du nombre de secondes depuis le 1er janvier 2000 en date actuelle, il faut appliquer les règles suivantes :

- 1 année non bissextile = 365 jours
- 1 année bissextile = 366 jours
 Les années 2000, 2004, 2008, 2012... (multiple de 4) sont des années bissextiles (sauf l'année 2100).
- 1 jour = 86 400 secondes
- 1 heure = 3 600 secondes
- 1 minute = 60 secondes


Le tableau suivant décrit les étapes à suivre pour obtenir la date du jour à partir du nombre de secondes écoulées depuis le 1er janvier 2000 :

Éta- pe	Action
1	Calculez le nombre de secondes écoulées depuis le 1er janvier 2000 : S = (contenu du registre 1 x 65536) + (contenu du registre 2)
2	Calculez le nombre de jours depuis le 1er janvier 2000 : D = valeur entière du quotient S / 86 400
	Calcul du nombre de secondes restantes : s = S - (D x 86 400)
3	Calcul du nombre de jours écoulés durant l'année en cours : d = D - (NL x 365) - (L x 366)
	avec NL = nombre d'années non bissextiles depuis l'année 2000 et L = nombre d'années bissextiles depuis l'année 2000
4	Calcul du nombre d'heures : h = valeur entière du quotient s/3 600
	Calcul du nombre de secondes restantes : s' = s - (h x 3 600)
5	Calcul du nombre de minutes : m = valeur entière du quotient s'/60
	Calcul du nombre de secondes restantes : s" = s' - (m x 60)

Éta- pe	Action
6	Calcul du nombre de millisecondes : ms = (contenu du registre 3) ET 0x03FF
7	Résultat : • La date actuelle est d + 1.
	Par exemple, si d = 303, la date actuelle correspond au 304e jour de l'année, soit au 31 octobre 2007. • L'heure actuelle est h:m:s":ms

Exemple de conversion de date du module ULP

Les registres 2900 et 2901 renvoient la date en nombre de secondes depuis le 1er janvier 2000. Le registre 2902 renvoie le complément en ms avec la qualité de la date.

Remarques

- La colonne du type indique le nombre de registres à lire pour obtenir la variable. Par exemple, INT16U nécessite la lecture d'un registre, alors que INT32 nécessite la lecture de 2 registres.
- Certaines variables telles que les mesures d'énergie doivent être lues comme un bloc de plusieurs registres. La lecture partielle du bloc provoque une erreur.
- La lecture à partir d'un registre non documenté aboutit à une exception Modbus, page 52.
- Les valeurs numériques sont données sous forme décimale. Lorsqu'il est utile de disposer de la valeur correspondante au format hexadécimal, celle-ci est indiquée comme une constante 0xdddd en langage C. Par exemple, la valeur décimale 123 est représentée comme suit sous forme hexadécimale : 0x007B.

- Pour les mesures qui dépendent de la présence du neutre identifiée par le registre 3314, page 152, la lecture de la valeur renvoie 32768 (0x8000) si non applicable. Pour chaque tableau où cela apparaît, une explication est donnée en note de bas de page.
- Les valeurs hors service et non applicables dépendent du type de données.

NOTE: Avec l'implémentation actuelle, certains registres peuvent afficher différentes valeurs hors service et non applicables. Par exemple, les registres INT16U peuvent renvoyer 32768 (0x8000) et le registre INT32U peut afficher 0x80000000.

Type de données	Valeurs hors service et non applicables				
INT16U 65535 (0xFFFF)					
INT16	-32768 (0x8000)				
INT32U	4294967295 (0xFFFFFFF)				
INT32	0x80000000				
INT64U	0xFFFFFFFFFFFF				
INT64	0x80000000000000				
FLOAT32	0xFFC00000				

Jeu de données

Contenu de cette partie

Jeu de données standard	76
Jeu de données hérité	98

Jeu de données standard

Contenu de ce chapitre

Jeu de données standard	7
Registres Modbus	78
Exemples de lecture	
Registres communs du jeu de données standard	

Jeu de données standard

Description

Le jeu de données standard contient les informations les plus utiles de chaque module IMU dans un tableau pratique. Ce jeu de données standard est disponible dans les registres 32000 à 32341. Il peut être lu avec trois requêtes de lecture.

Chaque module IMU met à jour régulièrement les valeurs dans les registres du jeu de données.

Le temps de réponse des requêtes dans les registres du jeu de données standard est plus court que le temps de réponse des requêtes dans les registres des appareils. Par conséquent, il est recommandé de lire les registres du jeu de données standard au lieu des registres des appareils pour améliorer les performances globales du système , page 45.

Le jeu de données standard peut être utilisé pour :

- l'interface Ethernet IFE pour un disjoncteur
- · le serveur de tableau Ethernet IFE
- · l'interface IFM Modbus-SL pour un disjoncteur

Registres Modbus

Tableau de registres communs du jeu de données standard

Les principales informations nécessaires à la supervision à distance d'un disjoncteur ComPacT NSX, ComPacT NS, MasterPact NT/NW ou MasterPact MTZ sont contenues dans le tableau de registres communs à partir du registre 32000.

Une requête de lecture Modbus est limitée à 125 registres maximum. Trois requêtes de lecture Modbus sont nécessaires pour lire la totalité du tableau.

Il contient les informations suivantes :

- Etat du disjoncteur
- Causes de déclenchement
- Valeurs en temps réel des mesures principales : courant, tension, puissance et énergie

Le contenu de ce tableau de registres est détaillé dans la section Registres communs du jeu de données standard, page 83.

L'utilisation de ces registres communs est vivement recommandée pour optimiser les temps de réponse et simplifier l'utilisation des données.

Format des tables

Les tables de registre se composent des colonnes suivantes :

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description

- Adresse: une adresse de registre de 16 bits sous forme de nombre hexadécimal. L'adresse correspond aux données utilisées dans la trame Modbus.
- Registre: un numéro de registre de 16 bits sous forme de nombre décimal (registre = adresse + 1).
- L/E : état de lecture ou d'écriture du registre
 - · L : le registre peut être lu en utilisant les fonctions Modbus.
 - E : le registre peut être écrit en utilisant les fonctions Modbus.
 - L/E : le registre peut être lu et écrit en utilisant les fonctions Modbus.
 - LC : le registre peut être lu en utilisant l'interface de commande.
 - EC : le registre peut être écrit en utilisant l'interface de commande.
- Unité : unité de mesure de l'information.
- Type: type de données de codage (voir la description des types de données ci-dessous).
- **Plage** : valeurs permises pour cette variable, généralement un sousensemble de ce que permet le format.
- A/E : types de déclencheur MicroLogic ComPacT ou ComPact NSX pour lesquels le registre est disponible.
 - Type A (ampèremètre): mesures de courant pour les disjoncteurs ComPact NSX uniquement.
 - Type E (énergie): mesures du courant, de la tension, de la puissance et de l'énergie pour les disjoncteurs ComPacT ou ComPact NSX.

- A/E/P/H: types de déclencheur MasterPact NT/NW et ComPacT or ComPact NS MicroLogic pour lesquels le registre est disponible.
 - Type A (ampèremètre) : mesures du courant
 - Type E (énergie): mesures de courant, de tension, de puissance et d'énergie
 - Type P (puissance): mesures de courant, de tension, de puissance, d'énergie et protection avancée
 - Type H (harmonique): mesures de courant, de tension, de puissance, d'énergie, de qualité de l'énergie et protection avancée
- XMicroLogic : registre disponible dans l'unité de contrôle X pour les disjoncteurs MasterPact MTZ.
- Description: fournit des informations sur le registre et les restrictions qui s'appliquent.

Types de données

Types de données	Description	Plage
INT16U	Entier de 16 bits non signé	0 à 65535
INT64	Entier de 64 bits signé	- 9 223 372 036 854 775 808 à + 9 223 372 036 854 775 807
INT64U	Entier de 64 bits non signé	0 à 18 446 744 073 709 600 000
FLOAT32	Entier de 32 bits signé à virgule flottante	2-126 (1.0) à 2 ¹²⁷ (2 - 2- ²³)

Format big-endian

Les variables INT64 et INT64U sont stockées au format big-endian : le registre de poids fort est transmis d'abord, le registre de poids faible est transmis ensuite.

Les variables INT64 et INT64U sont constituées de variables INT16U.

Voici les formules de calcul de la valeur décimale de ces variables :

- INT64: (0-bit63)x2⁶³ + bit62x2⁶² + bit61x2⁶¹ + ...bit1x2¹ + bit0x2⁰
- INT64U: bit63x2⁶³ + bit62x2⁶² + bit61x2⁶¹ + ...bit1x2¹ + bit0x2⁰

Exemple:

L'énergie active totale du jeu de données standard est une variable INT64 codée dans les registres 32096 à 32099.

Si les valeurs des registres sont :

- registre 32096 = 0
- registre 32097 = 0
- registre 32098 = 70 (0x0046) 0x0017 ou 23
- registre 32099 = 2105 (0x0839) 0x9692 ou 38546 comme variable INT16U et -26990 comme variable INT16 (utilisez la valeur INT16U pour calculer la valeur de l'énergie active totale).

L'énergie active totale est égale à $0x2^{48} + 0x2^{32} + 23x2^{16} + 38546x2^{0} = 1545874$ Wh.

Type de données : FLOAT32

Le type de données FLOAT32 est représenté par le format simple précision IEEE 754 (norme IEEE pour l'arithmétique binaire en virgule flottante). Une valeur N est calculée de la manière suivante :

Coefficient	Signification	Description	Nombre de bits
S	Signe	Définit le signe de la valeur :	1 bit
		0 = valeur positive	
		1 = valeur négative	
Е	Exposant	Excédent de 127 ajouté sous forme d'entier en valeur binaire.	8 bits
		Lorsque 0 < E < 255, l'exposant réel est : e = E - 127.	
М	Mantisse	Magnitude, significande binaire normalisé	23 bits

Exemple:

avec:

- S = 1
- E = 01111111 = 127
- $N = (-1) \times 2^0 \times (1+0.5) = -1.5$

Qualité des bits dans les registres

La qualité de chaque bit d'un registre codé comme type de données INT16U en tant qu'énumération de bits peut être indiquée dans le registre précédent.

Exemple:

La qualité de chaque bit du registre 32001, état du disjoncteur, est donnée dans le registre précédent, 32000.

La qualité des données correspondant au bit 0 du registre 32001, Contact de signalisation d'état OF, est donnée dans le bit 0 du registre 32000 :

- bit 0 du registre 32000 = qualité de signalisation d'état OF
- bit 0 du registre 32001 = contact de signalisation d'état OF

Si	Alors
Le bit 0 du registre 32000 = 1 ET le bit 0 du registre 32001 = 0	Le contact OF indique que l'appareil est ouvert.
Le bit 0 du registre 32000 = 1 ET le bit 0 du registre 32001 = 1	Le contact OF indique que l'appareil est fermé.
Le bit 0 du registre 32000 = 0	La signalisation de contact OF est incorrecte.

Exemples de lecture

Exemple de lecture d'un registre Modbus

Le tableau ci-dessous montre comment lire le courant efficace sur la phase 1 (I1) dans les registres 32028 et 32029 (codés au format FLOAT32).

- L'adresse du registre 32028 est égale à 32028 1 = 32027 = 0x7D1B.
- L'adresse Modbus de l'esclave Modbus est 255 = 0xFF.

Requête du maître		Réponse de l'esclave			
Nom de champ	Exemple	Nom de champ	Exemple		
Adresse de l'esclave Modbus	0xFF	Adresse de l'esclave Modbus	0xFF		
Code de fonction	0x03	Code de fonction	0x03		
Adresse du premier registre à lire (MSB)	0x7D	Longueur des données en octets	0x04		
Adresse du premier registre à lire (LSB)	0x1B	Valeur lue à l'adresse 0x7D1B (registre 32028) (MSB)	0x44		
Nombre de registres (MSB)	0x00	Valeur lue à l'adresse 0x7D1B (registre 32028) (LSB)	0x0A		
Nombre de registres (LSB)	0x02	Valeur lue à l'adresse 0x7D1C (registre 32029) (MSB)	0xC0		
CRC (MSB)	0xXX	Valeur lue à l'adresse 0x7D1C (registre 32029) (LSB)	0x00		
CRC (LSB)	0xXX	CRC (MSB)	0xXX		
-	-	CRC (LSB)	0xXX		

La valeur convertie des registres 32028 et 32029 codés au format FLOAT32 est 555.

Le courant efficace sur la phase 1 (I1) est donc de 555 A.

Exemple de lecture du tableau de registres communs du jeu de données standard

Du fait de la présence de plus de 125 registres dans le jeu de données standard, au minimum trois requêtes de lecture Modbus sont nécessaires pour lire le tableau entier.

Requête de lecture des registres 32000 à 32123 :

- L'adresse du registre 32000 = 0x7CFF.
- La longueur est de 124 registres = 0x7C.
- Le nombre d'octets est de 124 x 2 = 248 octets = 0xF8.
- L'adresse Modbus de l'esclave est 255 = 0xFF.

Requête de lecture des registres 32124 à 32241 :

- L'adresse du registre 32124 est 0x7D7B.
- La longueur est de 118 registres = 0x76.
- Le nombre d'octets est de 118 x 2 = 236 octets = 0xEC.
- L'adresse Modbus de l'esclave est 255 = 0xFF.

Requête de lecture des registres 32340 à 32435 :

- L'adresse du registre 32340 est 0x7E53.
- La longueur est de 96 registres = 0x60.
- Le nombre d'octets des 2 x 96 = 192 octets = 0xC0.

• L'adresse Modbus de l'esclave est 255 = 0xFF.

Requête du maître		Réponse de l'esclave			
Nom de champ	Exemple	Nom de champ	Exemple		
Adresse de l'esclave Modbus	0xFF	Adresse de l'esclave Modbus	0xFF		
Code de fonction	0x03	Code de fonction	0x03		
Adresse du premier registre à lire (MSB)	0x7C	Longueur des données en octets	0x8F		
Adresse du premier registre à lire (LSB)	0xFF	Valeur du registre 32000 (MSB)	0xXX		
Nombre de registres (MSB)	0x00	Valeur du registre 32000 (LSB)	0xXX		
Nombre de registres (LSB)	0x7C	Valeur du registre 32001 (MSB)	0xXX		
CRC (MSB)	0xXX	Valeur du registre 32001 (LSB)	0xXX		
CRC (LSB)	0xXX	-	0xXX		
-	-	-	0xXX		
-	_	Valeur du registre 32123 (MSB)	0xXX		
-	_	Valeur du registre 32123 (LSB)	0xXX		
-	_	CRC (MSB)	0xXX		
-	_	CRC (LSB)	0xXX		

Registres communs du jeu de données standard

Registre d'état du disjoncteur

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description							
0x7CFF	32000	L	_	INT16U	-	A/E	A/E/P/H	Х	-	Validité de chaque bit du registre 32001, page 80 :							
										0 = Non valide							
										• 1 = Valide							
0x7D00	32001	L	-	INT16U	_	A/E	A/E/P/H	Х	-	Registre d'état du disjoncteur							
						A/E	A/E/P/H	Х	0	Contact de signalisation d'état OF							
										0 = Le disjoncteur est ouvert.							
										1 = Le disjoncteur est fermé.							
						A/E	A/E/P/H	Х	1	Contact de signalisation de déclenchement SD							
										0 = le disjoncteur n'est pas déclenché.							
										1 = le disjoncteur est déclenché suite à un défaut électrique, par dérivation ou par bouton-poussoir.							
										Bit toujours égal à 0 pour les disjoncteurs MasterPact et ComPact NS avec motor mechanism.							
						A/E	A/E/P/H	Х	2	Contact de signalisation de déclenchement sur défaut SDE							
										0 = le disjoncteur n'est pas déclenché sur un défaut électrique.							
										1 = le disjoncteur est déclenché sur un défaut électrique (y compris test de défaut à la terre et test différentiel).							
						-	A/E/P/H	Х	3	Contact à ressort armé CH (uniquement avec MasterPact)							
										0 = ressort désarmé							
										1 = ressort armé							
										Bit toujours égal à 0 pour les disjoncteurs MasterPact et ComPact NS avec motor mechanism.							
						_	_	_	4	Réservé							
													_	A/E/P/H	Х	5	Contact prêt à fermer PF (uniquement avec MasterPact)
										0 = Non prêt à fermer							
										• 1 = Prêt à fermer							
										Bit toujours égal à 0 pour les disjoncteurs MasterPact et ComPact NS avec motor mechanism.							
						_	_	_	6-14	Réservé							

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Bit	Description
						A/E	A/E/P/H	-	15	Disponibilité des données
										Si ce bit est à 1, tous les autres bits du registre sont insignifiants.

Registres d'état IO

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Bit	Description
0x7D01	32002	L	-	INT16U	-	A/E	A/E/P/H	X	_	Validité de chaque bit du registre 32003 : • 0 = Non valide • 1 = Valide
0x7D02	32003	L	-	INT16U	-	A/E	A/E/P/H	Х	_	Etat du module IO1 et des contacts M2C
						A/E	A/E/P/H	Х	0	Etat de l'entrée numérique 1 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	Х	1	Etat de l'entrée numérique 2 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	X	2	Etat de l'entrée numérique 3 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	X	3	Etat de l'entrée numérique 4 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	X	4	Etat de l'entrée numérique 5 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	X	5	Etat de l'entrée numérique 6 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	X	6	Etat de la sortie numérique 1 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	X	7	Etat de la sortie numérique 2 : • 0 = Désactivé • 1 = Activé
						A/E	A/E/P/H	Х	8	Etat de la sortie numérique 3 : • 0 = Désactivé • 1 = Activé
						-	-	Х	9	Etat de la sortie numérique M2C 1 : • 0 = Désactivé • 1 = Activé
						-	_	Х	10	Etat de la sortie numérique M2C 2 :

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Bit	Description
										 0 = Désactivé 1 = Activé
						-	-	-	11- 14	Réservé
						A/E	A/E/P/H	-	15	Disponibilité des données
										Si ce bit est à 1, tous les autres bits du registre sont insignifiants.
7x0D03	32004	L	_	INT16U	-	A/E	A/E/P/H	X	_	Validité de chaque bit du registre 32005 : • 0 = Non valide
7: 0004	32005		_	INT16U	_	A /F	A /E /D /L L	· · ·	_	• 1 = Valide
7x0D04	32005	L	_	INTIBU	_	A/E	A/E/P/H	X	0	Etat du module IO2 Etat de l'entrée
									0	numérique 1 : • 0 = Désactivé • 1 = Activé
									1	Etat de l'entrée numérique 2 : • 0 = Désactivé • 1 = Activé
									2	Etat de l'entrée numérique 3 : • 0 = Désactivé • 1 = Activé
									3	Etat de l'entrée numérique 4 :
										 0 = Désactivé 1 = Activé
									4	Etat de l'entrée numérique 5 : • 0 = Désactivé • 1 = Activé
									5	Etat de l'entrée numérique 6 :
										 0 = Désactivé 1 = Activé
									6	Etat de la sortie numérique 1 :
										0 = Désactivé1 = Activé
									7	Etat de la sortie numérique 2 :
										0 = Désactivé 1 = Activé
									8	Etat de la sortie numérique 3 :
										0 = Désactivé1 = Activé
								_	9-14	Réservé
								_	15	Disponibilité des données
										Si ce bit est à 1, tous les autres bits du registre sont insignifiants.

Cause de déclenchement

Le registre de cause de déclenchement fournit des informations sur la cause du déclenchement pour les fonctions de protection standard. Si un bit lié à un déclenchement est défini sur 1 dans le registre des causes de déclenchement, cela signifie qu'un déclenchement s'est produit et n'a pas été acquitté.

- Pour les déclencheurs MicroLogic des disjoncteurs ComPacT NSX, le bit de cause de déclenchement est réinitialisé en appuyant sur la touche OK (clavier du déclencheur MicroLogic) à deux reprises (validation et confirmation).
- Pour les déclencheurs MicroLogic A/E/P/H des disjoncteurs MasterPact NT/ NW et ComPacT NS, le bit de cause de déclenchement est réinitialisé dès que le disjoncteur est refermé.
- Pour les unités de contrôle MicroLogicX des disjoncteurs MasterPact MTZ, le bit de cause de déclenchement est réinitialisé en appuyant sur le bouton de test/acquittement (situé à côté des voyants de cause de déclenchement sur l'unité de contrôle MicroLogic X). Appuyez sur le bouton et maintenez-le enfoncé pendant 3 à 15 secondes pour réinitialiser toutes les causes de déclenchement.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	x	Bit	Description
7x0D05	32006	L	_	INT16U	-	A/E	A/E/P/H	-	-	Validité de chaque bit du registre 32007 :
										• 0 = Non valide
										• 1 = Valide
7x0D06	32007	L	-	INT16U	-	A/E	A/E/P/H	Х		Cause du déclenchement pour les fonctions de protection standard
						A/E	A/E/P/H	Х	0	Protection Long retard Ir
						A/E	A/E/P/H	Х	1	Protection Court retard Isd
						A/E	A/E/P/H	Х	2	Protection Instantané li
						A/E	A/E/P/H	Х	3	Protection Terre Ig
						Е	A/P/H	Х	4	Protection différentielle l∆n
						A/E	A/E/P/H	Х	5	Protection instantanée intégrée (SELLIM et DIN/DINF)
						A/E	_	Х	6	Panne interne (STOP)
						_	A/E	-		Autres protections
						_	P/H	-		Panne interne (température)
						_	A/E/P/H	-	7	Panne interne (surtension)
						_	P/H	Х	8	Autre protection (voir registre 32009)
						-	-	-	9	Réservé
						E	-	-	10	Protection du moteur contre les déséquilibres
						Е	-	-	11	Protection du moteur contre les blocages
						Е	_	-	12	Protection du moteur contre les sous-charges
						E	_	-	13	Protection du moteur contre le démarrage long
						A/E	-	-	14	Protection contre les déclenchements réflexes
						A/E	A/E/P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
7x0D07	32008	L	-	INT16U	-	-	P/H	-		Validité de chaque bit du registre 32009 :
										• 0 = Non valide

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
										• 1 = Valide
7x0D08	32009	L	-	INT16U	-	_	P/H	_	_	Causes de déclenchement pour les fonctions de protection avancée
						_	P/H	-	0	Déséquilibre de courant
						_	P/H	_	1	Surintensité sur phase 1
						_	P/H	_	2	Surintensité sur phase 2
						_	P/H	_	3	Surintensité sur phase 3
						_	P/H	-	4	Surintensité sur neutre
						_	P/H	Х	5	Sous-tension
						_	P/H	Х	6	Surtension
						_	P/H	-	7	Déséquilibre de tension
						_	P/H	-	8	Surcharge en puissance
						_	P/H	Х	9	Puissance déwattée
						-	P/H	Х	10	Sous-fréquence
						_	P/H	Х	11	Surfréquence
						_	P/H	-	12	Rotation des phases
						-	P/H	-	13	Délestage de charge en fonction du courant
						_	P/H	-	14	Délestage de charge en fonction de la puissance
						_	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
0x7D09- 0x7D0C	32010- 32013	_	-	_	_	-	_	-	_	Réservé

Dépassement des points de consigne de la protection

Les registres de point de consigne d'alarme donnent des informations sur le dépassement des points de consigne de protection standard et avancée. Un bit est à 1 quand un point de consigne a été dépassé, même si le délai de temporisation n'a pas expiré.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
0x7D0D	32014	L	-	INT16U	_	A/E	P/H	-	-	Validité de chaque bit du registre 32015 : • 0 = Non valide • 1 = Valide
0x7D0E	32015	L	_	INT16U	_	A/E	P/H	-	-	Dépassement des points de consigne de la protection standard
						A/E	P/H	-	0	Seuil de déclenchement de la protection Long retard
						_	_	_	1-14	Réservé
						A/E	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
0x7D0F	32016	L	_	INT16U	_	A/E	P/H	-	_	Validité de chaque bit du registre 32017 : • 0 = Non valide
										• 1 = Valide

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Bit	Description
7x0D10	32017	L	-	INT16U	-	A/E	P/H	-	-	Dépassement des points de consigne de la protection avancée
						-	P/H	_	0	Déséquilibre de courant
						-	P/H	-	1	Courant maximum sur la phase 1
						-	P/H	-	2	Courant maximum sur la phase 2
						-	P/H	-	3	Courant maximum sur la phase 3
						-	P/H	-	4	Courant maximum sur le neutre
						-	P/H	_	5	Tension minimum
						_	P/H	_	6	Tension maximum
						-	P/H	_	7	Déséquilibre de tension
						_	P/H	-	8	Puissance maximum
						_	P/H	-	9	Puissance déwattée
						_	P/H	-	10	Fréquence minimum
						_	P/H	_	11	Fréquence maximum
						_	P/H	-	12	Rotation des phases
						-	P/H	-	13	Délestage de charge en fonction du courant
						-	P/H	-	14	Délestage de charge en fonction de la puissance
						-	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
7x0D11	32018	L	-	INT16U	_	_	P/H	-	-	Validité de chaque bit du registre 32019 : • 0 = Non valide • 1 = Valide
7x0D12	32019	L	-	INT16U	_	-	P/H	-	-	Paramètres étendus de la protection avancée
						-	P/H	-	0	Alarme de défaut à la terre
						E	P/H	-	1	Alarme de défaut de protection différentielle
						_	_	-	2-14	Réservé
						-	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.

Alarmes

Le registre d'alarme donne des informations sur les préalarmes et les alarmes définies par l'utilisateur. Un bit est mis à 1 dès qu'une alarme est active.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
7x0D13	32020	L	1	INT16U	-	A/E	ı	1	-	Validité de chaque bit du registre 32021 : • 0 = Non valide • 1 = Valide
7x0D14	32021	L	ı	INT16U	_	A/E	ı	-	_	Registre étendu de préalarme

Adresse	Registre	L/E	Unité	Type	Plage	A/E	A/E/P/H	X	Bit	Description
						A/E	_	X	0	Préalarme de la protection Long retard (PAL Ir)
						E	_	-	1	Préalarme de la protection différentielle (PAL IΔn)
						-	-	Х		Alarme de la protection différentielle(1)
						A/E	_	-	2	Préalarme de la protection Terre (PAL Ig)
						-	_	Х		Alarme de défaut à la terre ⁽²⁾
						-	_	-	3-14	Réservé
						A/E	_	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
7x0D15	32022	L	-	INT16U	_	A/E	-	-	-	Validité de chaque bit du registre 32023 : • 0 = Non valide • 1 = Valide
7x0D16	32023	L	-	INT16U	-	A/E	-	_	_	Registre des alarmes définies par l'utilisateur
						A/E	_	-	0	Alarme 201 définie par l'utilisateur
						A/E	_	-	1	Alarme 202 définie par l'utilisateur
						A/E	-	_	2	Alarme 203 définie par l'utilisateur
						A/E	-	_	3	Alarme 204 définie par l'utilisateur
						A/E	_	_	4	Alarme 205 définie par l'utilisateur
						A/E	_	_	5	Alarme 206 définie par l'utilisateur
						A/E	-	_	6	Alarme 207 définie par l'utilisateur
						A/E	_	_	7	Alarme 208 définie par l'utilisateur
						A/E	_	_	8	Alarme 209 définie par l'utilisateur
						A/E	-	_	9	Alarme 210 définie par l'utilisateur
						_	_	-	10-14	Réservé
						A/E	_	_	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
7x7D17– 0x0D1A	32024- 32027	-	_	_	_	-	-	-	-	Réservé

⁽¹⁾ Valeur disponible sur l'unité de contrôle MicroLogic 7.0 X uniquement si le module numérique ANSI 51N/51G - Alarme défaut terre est installé.

⁽²⁾ Valeur disponible sur l'unité de contrôle MicroLogic 2.0 X, 3.0 X, 5.0 X et 6.0 X uniquement si le module numérique ANSI 51N/51G - Alarme défaut terre est installé.

Courant

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x7D1B- 0x7D1C	32028- 32029	L	А	FLOAT32	_	A/E	A/E/P/H	Х	Courant efficace sur la phase 1
0x7D1D- 0x7D1E	32030- 32031	L	A	FLOAT32	-	A/E	A/E/P/H	Х	Courant efficace sur la phase 2
0x7D1F- 0x7D20	32032- 32033	L	А	FLOAT32	-	A/E	A/E/P/H	Х	Courant efficace sur la phase 3
0x7D21- 0x7D22	32034- 32035	L	A	FLOAT32	-	A/E	A/E/P/H	Х	Courant efficace sur le neutre(1)
0x7D23- 0x7D24	32036- 32037	L	A	FLOAT32	-	A/E	A/E/P/H	×	Maximum du courant efficace des phases 1, 2, 3 et N (phase la plus chargée) (3)
0x7D25- 0x7D26	32038- 32039	L	-	FLOAT32	-	A/E	A/E/P/H	Х	Rapport du courant de terre (rapport du paramètre lg)
0x7D27- 0x7D28	32040- 32041	L	-	FLOAT32	_	Е	A/P/H	Х	Rapport de courant au niveau de la fuite de terre (rapport de paramètre IΔn) ⁽²⁾

⁽¹⁾ Valeur disponible lorsque le registre de type de système renvoie 30 ou 41.

Valeur de courant maximum

Les valeurs de courant maximum sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
7x7D29– 0x0D2A	32042- 32043	L	А	FLOAT32	_	A/E	A/E/P/H	Х	Courant efficace maximum sur la phase 1
0x7D2B- 0x7D2C	32044- 32045	L	А	FLOAT32	_	A/E	A/E/P/H	Х	Courant efficace maximum sur la phase 2
0x7D2D- 0x7D2E	32046- 32047	L	А	FLOAT32	_	A/E	A/E/P/H	Х	Courant efficace maximum sur la phase 3
0x7D2F- 0x7D30	32048- 32049	L	А	FLOAT32	_	A/E	A/E/P/H	Х	Courant efficace maximum sur le neutre(1)
0x7D31– 0x7D32	32050- 32051	L	A	FLOAT32	-	A/E	A/E/P/H	X	C'est la valeur de courant maximum depuis la dernière réinitialisation de cette mesure. La mesure concerne les 4 courants, Maxl1, Maxl2, Maxl3 et MaxlN, et suit la valeur la plus élevée d'entre eux dans le temps.
0x7D33- 0x7D36	32052- 32055	-	_	-	-	-	-	_	Réservé

⁽²⁾ Valeur disponible avec MicroLogic 7.0 X.

⁽³⁾ Réinitialisation de la valeur avec la commande de réinitialisation minimum/maximum.

Tension

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x7D37- 0x7D38	32056- 32057	L	V	FLOAT32	41,6- 2250	Е	E/P/H	Х	Tension phase à phase efficace V12
7x7D39– 0x0D3A	32058- 32059	L	V	FLOAT32	41,6- 2250	Е	E/P/H	Х	Tension phase à phase efficace V23
0x7D3B- 0x7D3C	32060- 32061	L	V	FLOAT32	41,6- 2250	Е	E/P/H	Х	Tension phase à phase efficace V31
0x7D3D- 0x7D3E	32062- 32063	L	V	FLOAT32	24-1500	Е	E/P/H	Х	Tension phase à neutre efficace V1N ⁽¹⁾
0x7D3F- 0x7D40	32064- 32065	L	V	FLOAT32	24-1500	Е	E/P/H	Х	Tension phase à neutre efficace V2N(1)
0x7D41– 0x7D42	32066- 32067	L	V	FLOAT32	24-1500	Е	E/P/H	Х	Tension phase à neutre efficace V3N(1)
(1) Valeur di	sponible lorsq	ue le regi	stre de ty	pe de système i	renvoie 40 ou	ı 41.	•		-

Fréquence

Lorsque le déclencheur MicroLogic ne peut pas calculer la fréquence, il renvoie le message Not Evaluated = 0xFFC00000.

Adresse	Registre	L/E	Uni- té	Туре	Plage	A/E	A/E/P/H	X	Description		
0x7D43- 0x7D44	32068- 32069	L	Hz	FLOAT32	40,0-70,0	Е	P/H	Х	Fréquence		
0x7D45- 0x7D46	32070- 32071	L	Hz	FLOAT32	40,0-70,0	E	P/H	Х	Fréquence maximum (1)		
(1) Cette val	(1) Cette valeur est réinitialisable avec la commande de réinitialisation minimum/maximum.										

Puissance

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x7D47- 0x7D48	32072- 32073	L	W	FLOAT32	-16000000- 16000000	Е	E/P/H	Х	Puissance active sur la phase 1(1) (2)
7x7D49– 0x0D4A	32074- 32075	L	W	FLOAT32	-16000000- 16000000	E	E/P/H	Х	Puissance active sur la phase 2 ⁽¹⁾ (2)
0x7D4B- 0x7D4C	32076- 32077	L	W	FLOAT32	-16000000- 16000000	Е	E/P/H	Х	Puissance active sur la phase 3 ⁽¹⁾ (2)
0x7D4D- 0x7D4E	32078- 32079	L	W	FLOAT32	-16000000- 16000000	Е	E/P/H	Х	Puissance active totale (2)
0x7D4F- 0x7D50	32080- 32081	L	VAr	FLOAT32	-16000000- 16000000	E	E/P/H	Х	Puissance réactive sur la phase 1 ⁽¹⁾ (2)
0x7D51- 0x7D52	32082- 32083	L	VAr	FLOAT32	-16000000- 16000000	E	E/P/H	Х	Puissance réactive sur la phase 2 ⁽¹⁾ (2)
0x7D53- 0x7D54	32084- 32085	L	VAr	FLOAT32	-16000000- 16000000	Е	E/P/H	Х	Puissance réactive sur la phase 3 ⁽¹⁾ (2)
0x7D55– 0x7D56	32086- 32087	L	VAr	FLOAT32	-16000000- 16000000	Е	E/P/H	Х	Puissance réactive totale
0x7D57- 0x7D58	32088- 32089	L	VA	FLOAT32	0-16000000	E	E/P/H	Х	Puissance apparente sur la phase 1 ⁽¹⁾
7x7D59– 0x0D5A	32090- 32091	L	VA	FLOAT32	0-16000000	Е	E/P/H	Х	Puissance apparente sur la phase 2(1)
0x7D5B- 0x7D5C	32092- 32093	L	VA	FLOAT32	0-16000000	E	E/P/H	Х	Puissance apparente sur la phase 3 ⁽¹⁾

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
0x7D5D- 0x7D5E	32094- 32095	L	VA	FLOAT32	0-16000000	E	E/P/H	Х	Puissance apparente totale

(1) Valeur disponible lorsque le registre de type de système renvoie 40 ou 41.

(2) Le signe de la puissance active et réactive dépend de la configuration :

- du registre 3316 pour les disjoncteurs ComPacT NSX, ComPacT NS et MasterPact NT/NW;
- du registre 8405 pour des disjoncteurs MasterPact MTZ.

Energie

L'énergie est enregistrée au format big-endian : le registre de poids fort est transmis d'abord.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x7D5F- 0x7D62	32096- 32099	L	Wh	INT64	-	Е	E/P/H	Х	Energie active totale ⁽²⁾
0x7D63- 0x7D66	32100- 32103	L	VARh	INT64	-	E	E/P/H	Х	Energie réactive totale ⁽²⁾
7x7D67– 0x0D6A	32104- 32107	L	Wh	INT64U	_	Е	P/H	Х	Energie active totale fournie (dans la charge, comptée positivement) ⁽²⁾
0x7D6B- 0x7D6E	32108- 32111	L	Wh	INT64U	_	E	P/H	X	Energie active totale reçue (hors de la charge, comptée négativement) ⁽²⁾
0x7D6F- 0x7D72	32112- 32115	L	VARh	INT64U	_	Е	P/H	Х	Energie réactive totale fournie (dans la charge, comptée positivement) ⁽²⁾
0x7D73- 0x7D76	32116- 32119	L	VARh	INT64U	-	Е	P/H	Х	Energie réactive totale reçue (hors de la charge, comptée négativement) ⁽²⁾
7x7D77- 0x0D7A	32120- 32123	L	VAh	INT64U	-	Е	_	Х	Energie apparente totale (2)
0x7D7B- 0x7D7E	32124- 32127	L	Wh	INT64U	-	E	_	X	Energie active cumulée totale fournie (dans la charge, comptée positivement, non réinitialisable)
0x7D7F- 0x7D82	32128- 32131	L	Wh	INT64U	_	E	_	Х	Energie active cumulée totale reçue (hors de la charge, comptée négativement, non réinitialisable)

⁽¹⁾ Cette valeur est toujours positive avec le déclencheur MasterPact MicroLogic E.

Valeurs moyennes

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	x	Description
0x7D83- 0x7D84	32132- 32133	L	Α	FLOAT32	_	-	-	Х	Moyenne des courants efficaces des 3 phases
0x7D85- 0x7D86	32134- 32135	L	V	FLOAT32	-	-	_	Х	Moyenne des 3 tensions efficaces phase à phase : (V12 +V23+V31)/3
0x7D87- 0x7D88	32136- 32137	L	V	FLOAT32	-	_	_	Х	Moyenne des 3 tensions efficaces phase à neutre : (V1N +V2N+V3N)/3 ⁽¹⁾
(1) Valeur die	enonible lorsau	e le regio	stre de tvi	ne de système r	envoie 40 ou	ı <i>4</i> 1			_

⁽²⁾ Réinitialisation des valeurs avec la commande de réinitialisation des énergies.

Valeurs maximales de puissance

Les valeurs de puissance maximales sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
7x7D89– 0x0D8A	32138- 32139	L	W	FLOAT32	_	-	_	X	Puissance active totale maximum
0x7D8B- 0x7D8C	32140- 32141	L	VAr	FLOAT32	_	-	_	X	Puissance réactive totale maximum
0x7D8D- 0x7D8E	32142- 32143	L	VA	FLOAT32	_	-	_	Х	Puissance apparente totale maximum

Valeurs maximales des moyennes

Les valeurs moyennes maximales sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x7D8F- 0x7D90	32144- 32145	L	Α	FLOAT32	-	_	_	Х	Maximum de la moyenne des 3 courants efficaces de phase
0x7D91- 0x7D92	32146- 32147	L	V	FLOAT32	-	-	_	Х	Maximum de la moyenne des 3 tensions efficaces phase à phase
0x7D93- 0x7D94	32148- 32149	L	V	FLOAT32	_	_	_	Х	Maximum de la moyenne des 3 tensions efficaces phase à neutre

Courant de terre et courant de fuite à la terre

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description		
0x7D95- 0x7D96	32150- 32151	L	A	FLOAT32	_	_	-	Х	Courant de défaut de terre		
0x7D97- 0x7D98	32152- 32153	L	A	FLOAT32	_	_	-	Х	Courant de fuite à la terre ⁽¹⁾		
7x7D99– 0x0D9A	32154- 32155	-	-	-	_	_	-	_	Réservé		
(1) Valeur di	(1) Valeur disponible avec MicroLogic 7										

Valeurs de demande de courant

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
0x7D9B- 0x7D9C	32156- 32157	L	А	FLOAT32	-	E	E/P/H	Х	Valeur de demande de courant sur la phase 1 : I1 Dmd
0x7D9D- 0x7D9E	32158- 32159	L	А	FLOAT32	-	Е	E/P/H	Х	Valeur de demande de courant sur la phase 2 : l2 Dmd
0x7D9F- 0x7DA0	32160- 32161	L	A	FLOAT32	-	E	E/P/H	Х	Valeur de demande de courant sur la phase 3 : I3 Dmd
0x7DA1– 0x7DA2	32162- 32163	L	А	FLOAT32	_	E	E/P/H	Х	Valeur de demande de courant sur le neutre : IN Dmd

Valeurs de demande de puissance

- Lorsque la fenêtre est du type bloqué, cette valeur est mise à jour à la fin de l'intervalle de la fenêtre.
- · Pour la fenêtre glissante,
 - Si la durée configurée de la fenêtre est inférieure ou égale à 15 minutes, la valeur de demande est mise à jour toutes les 15 secondes.
 - Si la durée configurée de la fenêtre est supérieure ou égale à 15 minutes, la valeur de demande est mise à jour toutes les 1 minute.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
0x7DA3- 0x7DA4	32164- 32165	L	W	FLOAT32	_	E	E/P/H	Х	Demande de puissance active totale : P Dmd
0x7DA5- 0x7DA6	32166- 32167	L	VAR	FLOAT32	_	E	P/H	X	Demande de puissance réactive totale : Q Dmd
0x7DA7- 0x7DA8	32168- 32169	L	VA	FLOAT32	_	E	P/H	Х	Demande de puissance apparente totale : S Dmd

Valeurs de demande de courant de crête

Les valeurs de demande de courant de crête sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
0x7DA9– 0x7DAA	32170- 32171	L	A	FLOAT32	-	-	_	Х	Valeur de demande de courant de crête sur la phase 1 : I1 dmd max
0x7DAB- 0x7DAC	32172- 32173	L	A	FLOAT32	_	-	_	Х	Valeur de demande de courant de crête sur la phase 2 : 12 dmd max
0x7DAD- 0x7DAE	32174- 32175	L	A	FLOAT32	-	-	_	Х	Valeur de demande de courant de crête sur la phase 3 : 13 dmd max
0x7DAF– 0x7DB0	32176- 32177	L	А	FLOAT32	-	-	_	Х	Valeur de demande de courant de crête sur le neutre : IN dmd max (1)

⁽¹⁾ Valeur disponible lorsque le registre de type de système renvoie 30 ou 41.

Valeurs de demande de puissance de crête

Les valeurs de demande de puissance de crête sont mises à jour toutes les 15 secondes. Les valeurs de demande de puissance de crête sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x1DB7- 0x7DB2	32178- 32179	L	W	FLOAT32	_	_	_	Х	Demande de crête de puissance active totale : P dmd max
0x3DB7- 0x7DB4	32180- 32181	L	VAR	FLOAT32	_	-	_	Х	Demande de crête de puissance réactive totale : Q dmd max
0x5DB7- 0x7DB6	32182- 32183	L	VA	FLOAT32	_	-	_	Х	Demande de crête de puissance apparente totale : S dmd max

Valeurs maximales de courant de terre et de courant de fuite à la terre

Les valeurs de courant maximum sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x7DB7- 0x7DB8	32184- 32185	L	Α	FLOAT32	_	-	-	Х	Courant de défaut à la terre maximum
0x7DB9– 0x7DBA	32186- 32187	L	V	FLOAT32	-	Е	_	X	Courant de fuite à la terre maximum ⁽¹⁾
0x7DBB- 0x7DC0	32188- 32193	_	-	-	-	-	-	-	Réservé
(1) Valeur disponible avec MicroLogic 7.									

Valeurs de tension maximum

Les valeurs de tension maximum sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description
0x7DC1- 0x7DC2	32194- 32195	L	V	FLOAT32	41,6- 2250	E	E/P/H	Х	Tension efficace entre phases maximum V12
0x7DC3- 0x7DC4	32196- 32197	L	V	FLOAT32	41,6- 2250	E	E/P/H	Х	Tension efficace entre phases maximum V23
0x7DC5- 0x7DC6	32198- 32199	L	V	FLOAT32	41,6- 2250	Е	E/P/H	Х	Tension efficace entre phases maximum V31
0x7DC7- 0x7DC8	32200- 32201	L	V	FLOAT32	24-1500	E	E/P/H	Х	Tension phase-neutre efficace maximum V1N ⁽¹⁾
0x7DC9- 0x7DCA	32202- 32203	L	V	FLOAT32	24-1500	Е	E/P/H	Х	Tension phase-neutre efficace maximum V2N ⁽¹⁾
0x7DCB- 0x7DCC	32204- 32205	L	V	FLOAT32	24-1500	Е	E/P/H	Х	Tension phase-neutre efficace maximum V3N ⁽¹⁾

Facteur de puissance

Adresse	Registre	L/E	Uni- té	Туре	Plage	A/E	A/E/P/H	х	Description
0x7DCD- 0x7DCE	32206- 32207	L	-	FLOAT32	_	Е	E/P/H	Х	Facteur de puissance sur la phase 1 ⁽¹⁾
0x7DCF- 0x7DD0	32208- 32209	L	-	FLOAT32	_	Е	E/P/H	Х	Facteur de puissance sur la phase 2 ⁽¹⁾
0x7DD1- 0x7DD2	32210- 32211	L	-	FLOAT32	_	Е	E/P/H	Х	Facteur de puissance sur la phase 3 ⁽¹⁾
0x7DD3- 0x7DD4	32212- 32213	L	-	FLOAT32	_	Е	E/P/H	Х	Facteur de puissance total
0x7DD5- 0x7DD6	32214- 32215	L	-	FLOAT32	-	Е	Н	Х	Facteur de puissance fondamentale sur la phase 1 (cos\phi1)(1)(2)
0x7DD7- 0x7DD8	32216- 32217	L	-	FLOAT32	_	Е	Н	Х	Facteur de puissance fondamentale sur la phase 2 (cos\phi2)^{(1)(2)}
0x7DD9- 0x7DDA	32218- 32219	L	-	FLOAT32	_	Е	Н	Х	Facteur de puissance fondamentale sur la phase 3 (cos¢3)(1)(2)

Adresse	Registre	L/E	Uni- té	Туре	Plage	A/E	A/E/P/H	х	Description
0x7DDB- 0x7DDC	32220- 32221	L	-	FLOAT32	-	E	Н	Х	Facteur de puissance fondamentale total (2)

⁽¹⁾ Valeur disponible lorsque le registre de type de système renvoie 40 ou 41.

(2) Le signe du facteur de puissance fondamentale $(\cos\phi)$ dépend de la configuration :

- du registre 3318 pour les disjoncteurs ComPacT NSX et ComPacT NS.
- du registre 8404 pour les disjoncteurs MasterPact MTZ.

Distorsion harmonique totale (THD)

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	x	Description
0x7DDD- 0x7DDE	32222- 32223	L	-	FLOAT32	0-2	E	Н	Х	Distorsion harmonique totale (THD) de la tension phase à phase V12 comparée à la fondamentale
0x7DDF- 0x7DE0	32224- 32225	L	-	FLOAT32	0-2	E	Н	X	Distorsion harmonique totale (THD) de la tension phase à phase V23 comparée à la fondamentale
0x7DE1- 0x7DE2	32226- 32227	L	-	FLOAT32	0-2	E	Н	X	Distorsion harmonique totale (THD) de la tension phase à phase V31 comparée à la fondamentale
0x7DE3- 0x7DE4	32228- 32229	L	_	FLOAT32	0-2	E	Н	X	Distortion harmonique totale (THD) de la tension phase à neutre V1N comparée à la fondamentale ⁽¹⁾
0x7DE5- 0x7DE6	32230- 32231	L	-	FLOAT32	0-2	E	Н	Х	Distortion harmonique totale (THD) de la tension phase à neutre V2N comparée à la fondamentale ⁽¹⁾
0x7DE7- 0x7DE8	32232- 32233	L	_	FLOAT32	0-2	E	Н	Х	Distortion harmonique totale (THD) de la tension phase à neutre V3N comparée à la fondamentale ⁽¹⁾
0x7DE9– 0x7DEA	32234- 32235	L	-	FLOAT32	0-2	E	Н	Х	Distorsion harmonique totale (THD) du courant sur phase 1 comparée à la fondamentale
0x7DEB- 0x7DEC	32236- 32237	L	-	FLOAT32	0-2	Е	Н	Х	Distorsion harmonique totale (THD) du courant sur phase 2 comparée à la fondamentale
0x7DED- 0x7DEE	32238- 32239	L	-	FLOAT32	0-2	Е	Н	Х	Distorsion harmonique totale (THD) du courant sur phase 3 comparée à la fondamentale
0x7DEF- 0x7DF0	32240- 32241	L	-	FLOAT32	0-2	E	Н	Х	Moyenne des distorsions harmoniques totales (THD) du courant des 3 phases, comparée à la valeur fondamentale

⁽¹⁾ Valeur disponible lorsque le registre de type de système renvoie 40 ou 41.

Facteur de puissance maximum

Le facteur de puissance maximum est réinitialisable avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x7DF1- 0x7DF2	32242- 32243	L	-	FLOAT32	-	-	_	Х	Facteur de puissance totale maximum
0x7DF3- 0x7E52	32244- 32339	-	-	-	_	_	_	-	Réservé

Inhibition de la commande de fermeture

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Bit	Description
0x7E53	32340	L	_	INT16U	-	A/E	A/E/P/H	х	-	Validité de chaque bit du registre 32341 : • 0 = Non valide • 1 = Valide
0x7E54	32341	L	-	INT16U	-	A/E	A/E/P/H	Х	_	Etat d'inhibition de la commande de fermeture
									0	Fermeture du disjoncteur inhibée par le module IO
										0 = Désactiver1 = Activer
									1	Fermeture du disjoncteur inhibée par la communication : 0 = Désactiver 1 = Activer
						_	_	_	2-15	Réservé

Jeu de données hérité

Contenu de ce chapitre

Jeu de données hérité	99
Registres Modbus	100
Exemples de lecture	102
Registres communs du jeu de données hérité	104

Jeu de données hérité

Description

Le jeu de données hérité contient les informations les plus utiles de chaque module IMU sous la forme d'un seul tableau. Le jeu de données hérité est disponible dans les registres 12000 à 12200. Il peut être lu avec deux requêtes de lecture.

IMU

Le temps de réponse des requêtes dans les registres du jeu de données hérité est plus court que le temps de réponse des requêtes dans les registres des appareils. Par conséquent, il est recommandé de lire les registres du jeu de données hérité au lieu des registres des appareils pour améliorer les performances globales du système. Pour plus d'informations, reportez-vous à la section Recommandation pour la programmation avec Modbus, page 45.

NOTE:

- Le jeu de données hérité est compatible avec les versions héritées du déclencheur MicroLogic pour les disjoncteurs <ph translate= "no">ComPact NSX</ph>, PowerPacT<ph translate="no">ComPact NSX</ph> H-, J- et L-, ComPact NS, PowerPacT P- et R- ou MasterPact NT/NW. Pour cette raison, les données lues directement dans les registres Modbus sont organisées autrement que dans le jeu de données standard.
- Pour les nouvelles applications, il est recommandé d'utiliser le jeu de données standard au lieu du jeu de données hérité.

Registres Modbus

Tableau de registres communs du jeu de données hérité

Les principales informations nécessaires à la supervision à distance d'un disjoncteur ComPacT NSX, ComPacT NS, MasterPact NT/NW ou MasterPact MTZ sont contenues dans le tableau de registres communs à partir du registre 12000.

Ce tableau compact de 114 registres peut être lu par une seule requête Modbus.

Il contient les informations suivantes :

- État du disjoncteur
- · Causes de déclenchement
- · courant, tension, puissance, énergie, distorsion harmonique totale

Le contenu de ce tableau de registres est détaillé à la section Registres communs du jeu de données hérité, page 104.

L'utilisation de ces registres communs est vivement recommandée pour optimiser les temps de réponse et simplifier l'utilisation des données.

Format des tables

Les tables de registre se composent des colonnes suivantes :

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Description

- Adresse: une adresse de registre de 16 bits sous forme de nombre hexadécimal. L'adresse correspond aux données utilisées dans la trame Modbus.
- Registre : un numéro de registre de 16 bits sous forme de nombre décimal (registre = adresse + 1).
- L/E : état de lecture ou d'écriture du registre
 - R : le registre peut être lu en utilisant les fonctions Modbus
 - W : le registre peut être écrit en utilisant les fonctions Modbus
 - RW : le registre peut être lu et écrit en utilisant les fonctions Modbus
 - LC : le registre peut être lu en utilisant l'interface de commande.
 - EC : le registre peut être écrit en utilisant l'interface de commande.
- Unité: unité de mesure de l'information.
- Type: type de données de codage (voir la description des types de données ci-dessous).
- Plage : valeurs permises pour cette variable, généralement un sousensemble de ce que permet le format.
- A/E: types de déclencheur MicroLogic ComPacT ou ComPact NSX pour lesquels le registre est disponible.
 - Type A (ampèremètre): mesures de courant pour les disjoncteurs ComPact NSX uniquement.
 - Type E (énergie): mesures du courant, de la tension, de la puissance et de l'énergie pour les disjoncteurs ComPacT ou ComPact NSX.

- A/E/P/H: types de déclencheurs MasterPact NT/NW et ComPacT ou ComPact NS MicroLogic pour lesquels le registre est disponible.
 - Type A (ampèremètre) : mesures du courant
 - Type E (énergie): mesures de courant, de tension, de puissance et d'énergie
 - Type P (puissance): mesures de courant, de tension, de puissance, d'énergie et protection avancée
 - Type H (harmonique): mesures de courant, de tension, de puissance, d'énergie, de qualité de l'énergie et protection avancée
- X : registre disponible dans l'unité de contrôle MicroLogic X pour les disjoncteurs MasterPact MTZ lorsque le jeu de données hérité Modbus Digital Module a été acheté et installé sur l'unité MicroLogic X.
- Description: fournit des informations sur le registre et les restrictions qui s'appliquent.

Types de données

Types de données	Description	Plage
INT16U	Entier de 16 bits non signé	0 à 65535
INT16	Entier de 16 bits signé	-32768 à +32767
INT32U	Entier de 32 bits non signé	0 à 4 294 967 295
INT32	Entier de 32 bits signé	-2 147 483 648 à +2 147 483 647

Format big-endian

Les variables INT32 et INT32U sont stockées au format big-endian : le registre de poids fort est transmis d'abord, le registre de poids faible est transmis ensuite.

Les variables INT32 et INT32U sont constituées de variables INT16U.

Voici les formules de calcul de la valeur décimale de ces variables :

- INT32: $(0-bit31)x2^{31} + bit30x2^{30} + bit29x2^{29} + ...bit1x2^{1} + bit0x2^{0}$
- INT32U: bit31x2³¹ + bit30x2³⁰ + bit29x2²⁹ + ...bit1x2¹ + bit0x2⁰

Exemple:

L'énergie réactive du jeu de données hérité est une variable INT32 codée dans les registres 12052 à 12053.

Si les valeurs des registres sont :

- registre 12052 = 0xFFF2 = 0x8000 + 0x7FF2 ou 32754
- registre 12053 = 0xA96E ou 43374 comme variable INT16U et -10606 comme variable INT16 (utilisez la valeur INT16U pour calculer la valeur de l'énergie réactive).

Alors l'énergie réactive est égale à $(0-1)x2^{31} + 32754x2^{16} + 43374x2^{0} = -874130$ kVARh.

Exemples de lecture

Exemple de lecture d'un registre Modbus

Le tableau ci-dessous montre comment lire le courant efficace sur la phase 1 (I1) dans le registre 12016.

- L'adresse du registre 12016 est 12016 1 = 12015 = 0x2EEF.
- L'adresse Modbusde l'esclave Modbus est 47 = 0x2F.

Requête du maître		Réponse de l'esclave	
Nom de champ	Exemple	Nom de champ	Exemple
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F
Code de fonction	0x03	Code de fonction	0x03
Adresse du registre à lire (MSB)	0x2E	Longueur des données en octets	0x02
Adresse du registre à lire (LSB)	0xEF	Valeur du registre (MSB)	0x02
Nombre de registres (MSB)	0x00	Valeur de registre (LSB)	0x2B
Nombre de registres (LSB)	0x01	CRC (MSB)	0xXX
CRC (MSB)	0xXX	CRC (LSB)	0xXX
CRC (LSB)	0xXX	_	_

Le contenu du registre 12016 (adresse 0x2EEF) est 0x022B = 555.

Le courant efficace sur la phase 1 (I1) est donc de 555 A.

Exemple de lecture du tableau de registres communs du jeu de données hérité

Le tableau ci-dessous indique comment lire le tableau de registres communs du jeu de données hérité. Ce tableau commence au registre 12000 et contient 113 registres.

- L'adresse du registre 12000 = 0x2EDF.
- La longueur du tableau est de 113 registres = 0x71.
- Le nombre d'octets des 113x2 = 226 octets = 0xE2.
- L'adresse Modbus de l'esclave est 47 = 0x2F.

Requête du maître		Réponse de l'esclave	
Nom de champ	Exemple	Nom de champ	Exemple
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F
Code de fonction	0x03	Code de fonction	0x03
Adresse du premier registre à lire (MSB)	0x2E	Longueur des données en octets	0xE2
Adresse du premier registre à lire (LSB)	0xDF	Valeur du registre 12000 (MSB)	0xXX
Nombre de registres (MSB)	0x00	Valeur du registre 12000 (LSB)	0xXX
Nombre de registres (LSB)	0x71	Valeur du registre 12001 (MSB)	0xXX
CRC (MSB)	0xXX	Valeur du registre 12001 (LSB)	0xXX
CRC (LSB)	0xXX	-	0xXX
-	_	-	0xXX
-	_	Valeur du registre 12112 (MSB)	0xXX
-	_	Valeur du registre 12112 (LSB)	0xXX

Requête du maître		Réponse de l'esclave					
Nom de champ	Exemple	Nom de champ	Exemple				
-	_	CRC (MSB)	0xXX				
-	_	CRC (LSB)	0xXX				

Registres communs du jeu de données hérité

Registre d'état du disjoncteur

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
0x2EDF	12000	L	-	INT16U	_	A/E	A/E/P/H	Х	_	Validité de chaque bit du registre d'état du disjoncteur.
0x2EE0	12001	L	-	INT16U	-	A/E	A/E/P/H	Х	_	Registre d'état du disjoncteur
						A/E	A/E/P/H	Х	0	Contact de signalisation d'état OF
										0 = Le disjoncteur est ouvert.
										1 = Le disjoncteur est fermé.
						A/E	A/E/P/H	Х	1	Contact de signalisation de déclenchement SD
										0 = le disjoncteur n'est pas déclenché.
										1 = Le disjoncteur est déclenché suite à un défaut électrique, par dérivation ou par bouton-poussoir.
										Bit toujours égal à 0 pour les disjoncteurs MasterPact NT/NW et ComPact NS avec motor mechanism.
						A/E	A/E/P/H	Х	2	Contact de signalisation de déclenchement sur défaut SDE
										0 = le disjoncteur n'est pas déclenché sur un défaut électrique.
										1 = le disjoncteur est déclenché sur un défaut électrique (y compris test de défaut à la terre et test différentiel).
						-	A/E/P/H	Х	3	Contact à ressort armé CH (uniquement avec MasterPact)
										0 = ressort désarmé
										1 = ressort armé
										Bit toujours égal à 0 pour le disjoncteur ComPacT NS.
						_	_	_	4	Réservé
						_	A/E/P/H	Х	5	Contact prêt à fermer PF (uniquement avec MasterPact)
										0 = Non prêt à fermer
										1 = Prêt à fermer
										Bit toujours égal à 0 pour le disjoncteur ComPacT NS.
						-	A/E/P/H	Х	6	Distinction entre ComPacT NS et MasterPact NT/NW
										0 = ComPacT NS
										1 = MasterPact NT/NW

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
						_	_	_	7-14	Réservé
						A/E	_	Х	15	Disponibilité des données
										Si ce bit est à 1, tous les autres bits du registre sont insignifiants.

Registres d'état IO

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Bit	Description
0x2EE1	12002	L	-	INT16U	_	A/E	A/E/P/H	Х	-	Etat du module IO 1
									0	Etat de l'entrée 1 • 0 = Désactivé • 1 = Activé
									1	Etat de l'entrée 2 • 0 = Désactivé • 1 = Activé
									2	Etat de l'entrée 3 • 0 = Désactivé • 1 = Activé
									3	Etat de l'entrée 4 • 0 = Désactivé • 1 = Activé
									4	Etat de l'entrée 5 • 0 = Désactivé • 1 = Activé
									5	Etat de l'entrée 6 • 0 = Désactivé • 1 = Activé
									6	Etat de la sortie 1 O = Désactivé 1 = Activé
									7	Etat de la sortie 2 • 0 = Désactivé • 1 = Activé
									8	Etat de la sortie 3 • 0 = Désactivé • 1 = Activé
									9-14	Réservé
									15	Disponibilité des données Si ce bit est à 1, tous les autres bits du registre sont insignifiants.
0x2EE2	12003	L	_	INT16U	_	A/E	A/E/P/H	Х	_	Etat du module IO 2
									0	Etat de l'entrée 1 • 0 = Désactivé • 1 = Activé
									1	Etat de l'entrée 2 • 0 = Désactivé • 1 = Activé
									2	Etat de l'entrée 3 • 0 = Désactivé

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Bit	Description
										• 1 = Activé
									3	Etat de l'entrée 4 • 0 = Désactivé • 1 = Activé
									4	Etat de l'entrée 5 • 0 = Désactivé • 1 = Activé
									5	Etat de l'entrée 6 • 0 = Désactivé • 1 = Activé
									6	Etat de la sortie 1 • 0 = Désactivé • 1 = Activé
									7	Etat de la sortie 2 • 0 = Désactivé • 1 = Activé
									8	Etat de la sortie 3 • 0 = Désactivé • 1 = Activé
									9-14	Réservé
									15	Disponibilité des données Si ce bit est à 1, tous les autres bits du registre sont insignifiants.

Cause de déclenchement

Le registre de cause de déclenchement fournit des informations sur la cause du déclenchement pour les fonctions de protection standard. Si un bit lié à un déclenchement est défini sur 1 dans le registre des causes de déclenchement, cela signifie qu'un déclenchement s'est produit et n'a pas été acquitté.

- Pour les déclencheurs MicroLogic des disjoncteurs ComPacT NSX, le bit de cause de déclenchement est réinitialisé en appuyant sur la touche OK (clavier du déclencheur MicroLogic) à deux reprises (validation et confirmation).
- Pour les déclencheurs MicroLogic A/E/P/H des disjoncteurs MasterPact NT/ NW et ComPacT NS, le bit de cause de déclenchement est réinitialisé dès que le disjoncteur est refermé.
- Pour les unités de contrôle MicroLogic X des disjoncteurs MasterPact MTZ, le bit de cause de déclenchement est réinitialisé en appuyant sur le bouton de test/acquittement (situé à côté des voyants de cause de déclenchement sur l'unité de contrôle MicroLogic X). Appuyez sur le bouton et maintenez-le enfoncé pendant 3 à 15 secondes pour réinitialiser toutes les causes de déclenchement.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
0x2EE3	12004	L	_	INT16U	-	A/E	A/E/P/H	Х	_	Cause du déclenchement pour les fonctions de protection standard
						A/E	A/E/P/H	Х	0	Protection Long retard Ir
						A/E	P/H	Х	1	Protection Court retard Isd
						_	A/E	Х	1	Protection Court retard Isd ou protection instantanée li
						A/E	P/H	Х	2	Protection Instantané li

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Bit	Description						
						A/E	A/E/P/H	Х	3	Protection Terre Ig						
						Е	A/P/H	Х	4	Protection différentielle l∆n						
						A/E	A/E/P/H	Х	5	Protection instantanée et intégrée de :						
										MasterPact NT06L1, NT08L1, NT10L1 et équivalent ComPacT NS						
										ComPacT NSX						
						A/E	_	Х	6	Panne interne (STOP)						
						-	A/E	-		Autres protections ou protection Instantané intégrée						
						-	P/H	-		Panne interne (température)						
						-	A/E/P/H	-	7	Panne interne (surtension)						
						-	P/H	Х	8	Autre protection (voir registre 12005)						
						E	-	-	9	Instantané avec protection différentielle sur le déclencheur.						
						E	-	-	10	Protection du moteur contre les déséquilibres						
						Е	_	-	11	Protection du moteur contre les blocages						
						Е	_	_	12	Protection du moteur contre les sous-charges						
						Е	_	_	13	Protection du moteur contre le démarrage long						
						A/E	_	-	14	Protection contre les déclenchements réflexes						
						A/E	A/E/P/H	Х	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.						
0x2EE4	12005	L	_	INT16U	_	_	P/H	Х	-	Causes de déclenchement pour les fonctions de protection avancée						
						-	P/H	-	0	Déséquilibre de courant						
						-	P/H	-	1	Surintensité sur phase 1						
						-	P/H	-	2	Surintensité sur phase 2						
						-	P/H	-	3	Surintensité sur phase 3						
						_	P/H	-	4	Surintensité sur neutre						
						_	P/H	Х	5	Sous-tension						
												-	P/H	Х	6	Surtension
						-	P/H	-	7	Déséquilibre de tension						
						_	P/H	-	8	Surcharge en puissance						
						_	P/H	Х	9	Puissance déwattée						
						-	P/H	Х	10	Sous-fréquence						
						_	P/H	Х	11	Surfréquence						
						_	P/H	-	12	Rotation des phases						
						-	P/H	-	13	Délestage de charge en fonction du courant						
						-	P/H	-	14	Délestage de charge en fonction de la puissance						

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Bit	Description
						-	P/H	Х	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
0x2EE5- 0x2EE6	12006- 12007	-	-	-	-	_	-	-	_	Réservé

Dépassement des points de consigne de la protection

Les registres de point de consigne d'alarme donnent des informations sur le dépassement des points de consigne de protection standard et avancée. Un bit est à 1 quand un point de consigne a été dépassé, même si le délai de temporisation n'a pas expiré.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description														
0x2EE7	x2EE7 12008 L	L	-	INT16U	-	A/E	P/H	-	_	Dépassement des points de consigne de la protection standard														
						A/E	P/H	-	0	Seuil de déclenchement de la protection Long retard														
						_	_	-	1- 14	Réservé														
					A/E	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.															
0x2EE8	EE8 12009 L	_	INT16U	-	_	P/H	_	_	Dépassement des points de consigne de la protection avancée															
						-	P/H	-	0	Déséquilibre de courant														
					-	P/H	-	1	Courant maximum sur la phase 1															
					_	P/H	-	2	Courant maximum sur la phase 2															
						_	P/H	-	3	Courant maximum sur la phase 3														
						_	P/H	-	4	Courant maximum sur le neutre														
						-	P/H	_	5	Tension minimum														
						_	P/H	_	6	Tension maximum														
						-	P/H	_	7	Déséquilibre de tension														
						-	P/H	-	8	Puissance maximum														
						_	P/H	_	9	Puissance déwattée														
						-	P/H	_	10	Fréquence minimum														
					ı			_	P/H	-	11	Fréquence maximum												
						_	P/H	_	12	Rotation des phases														
																				-	P/H	-	13	Délestage de charge en fonction du courant
						_	P/H	-	14	Délestage de charge en fonction de la puissance														
						_	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.														
0x2EE9	12010	L	-	INT16U	_	-	P/H	_	-	Suite du registre précédent														
				_	P/H	_	0	Alarme de défaut à la terre																
						Е	P/H	-	1	Alarme de défaut de protection différentielle														

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
						-	_	-	2- 14	Réservé
						-	P/H	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.

Alarmes

Le registre d'alarme donne des informations sur les préalarmes et les alarmes définies par l'utilisateur. Un bit est mis à 1 dès qu'une alarme est active.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
0x2EEA	12011	L	-	INT16U	_	A/E	_	Х	-	Registre de préalarme
						A/E	_	Х	0	Préalarme de la protection Long retard (PAL Ir)
						Е	-	-	1	Préalarme de la protection différentielle (PAL IΔn)
						_	_	Х		Alarme de la protection différentielle ⁽¹⁾
						A/E	_	-	2	Préalarme de la protection Terre (PAL lg)
						_	-	Х		Alarme de défaut à la terre
						_	_	_	3-14	Réservé
						A/E	-	Х	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
0x2EEB	12012	L	_	INT16U	_	A/E	_	-	-	Registre des alarmes définies par l'utilisateur
						A/E	-	-	0	Alarme 201 définie par l'utilisateur
					A/E	-	-	1	Alarme 202 définie par l'utilisateur	
						A/E	_	-	2	Alarme 203 définie par l'utilisateur
						A/E	_	-	3	Alarme 204 définie par l'utilisateur
						A/E	_	-	4	Alarme 205 définie par l'utilisateur
						A/E	_	-	5	Alarme 206 définie par l'utilisateur
						A/E	-	-	6	Alarme 207 définie par l'utilisateur
						A/E	-	-	7	Alarme 208 définie par l'utilisateur
						A/E	_	-	8	Alarme 209 définie par l'utilisateur
						A/E	_	-	9	Alarme 210 définie par l'utilisateur
						-	_	-	10- 14	Réservé
						A/E	_	-	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	X	Bit	Description
0x2EEC- 0x2EEE	12013- 12015	_	_	_	_	-	_	-	-	Réservé

⁽¹⁾ Valeur disponible sur l'unité de contrôle MicroLogic 7.0 X uniquement si le module numérique ANSI 51N/51G - Alarme défaut terre est installé

Courant

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2EEF	12016	L	А	INT16U	0-32767	A/E	A/E/P/H	Х	Courant efficace sur la phase 1 : I1
0x2EF0	12017	L	А	INT16U	0-32767	A/E	A/E/P/H	X	Courant efficace sur la phase 2 : I2
0x2EF1	12018	L	А	INT16U	0-32767	A/E	A/E/P/H	Х	Courant efficace sur la phase 3:13
0x2EF2	12019	L	А	INT16U	0-32767	A/E	A/E/P/H	Х	Courant efficace sur le neutre : IN (1)
0x2EF3	12020	L	А	INT16U	0-32767	A/E	A/E/P/H	Х	Valeur maximum de I1, I2, I3 et IN
0x2EF4	12021	L	%lg	INT16U	0-32767	A/E	A/E/P/H	X	Courant de défaut de la terre lg (2)
0x2EF5	12022	L	%l∆n	INT16U	0-32767	E	A/E/P/H	Х	Courant de perte à la terre lΔn ⁽³⁾

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de courant de neutre externe (ENCT).

(2) Cette valeur n'est disponible que :

- Pour les unités de contrôle MasterPact MTZ MicroLogic 6.0 X, exprimé en % du seuil lg pick-up
- Pour les déclencheurs MasterPact NT/NW et ComPacT NS MicroLogic 6.0, exprimé en % du seuil Ig pick-up
- Pour les déclencheurs ComPacT NSX MicroLogic 6.2 et 6.3, exprimé en % du seuil de déclenchement Ig pick-up

(3) Cette valeur n'est disponible que :

- Pour les unités de contrôle MasterPact MTZ MicroLogic 7.0 X exprimé en % du seuil l∆n
- Pour les déclencheurs MasterPact NT/NW et ComPacT NS MicroLogic 7.0, exprimé en % du seuil lΔn
- Pour les déclencheurs ComPacT NSX MicroLogic 7.2 et 7.3, exprimé en % du seuil l∆n

Valeur de courant maximum

Les valeurs de courant maximum sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2EF6	12023	L	Α	INT16U	0-32767	A/E	A/E/P/H	X	Courant efficace maximum sur la phase 1 : l1
0x2EF7	12024	L	Α	INT16U	0-32767	A/E	A/E/P/H	X	Courant efficace maximum sur la phase 2 : l2
0x2EF8	12025	L	Α	INT16U	0-32767	A/E	A/E/P/H	Х	Courant efficace maximum sur la phase 3 : l3
0x2EF9	12026	L	Α	INT16U	0-32767	A/E	A/E/P/H	Х	Courant efficace maximum sur le neutre : IN (1)
0x2EFA	12027	L	А	INT16U	0-32767	A/E	A/E/P/H	Х	Courant efficace maximum des 4 registres précédents
0x2EFB	12028	L	%lg	INT16U	0-32767	A/E	A/E/P/H	Х	Courant de défaut à la terre maximum lg (2)

⁽²⁾ Valeur disponible sur l'unité de contrôle MicroLogic 2.0 X, 3.0 X, 5.0 X et 6.0 X uniquement si le module numérique ANSI 51N/51G - Alarme défaut terre est installé.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2EFC	12029	L	%l∆n	INT16U	0-32767	E	A/P/H	X	Courant de fuite à la terre maximum ⁽³⁾

(1) Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de courant de neutre externe (ENCT).

(2) Cette valeur n'est disponible que :

- Pour les unités de contrôle MasterPact MTZ MicroLogic 6.0 X, exprimé en % du seuil Ig pick-up
- Pour les déclencheurs MasterPact NT/NW et ComPacT NS MicroLogic 6.0, exprimé en % du seuil Ig pick-up
- Pour les déclencheurs ComPacT NSX MicroLogic 6.2 et 6.3, exprimé en % du seuil Ig pick-up

(3) Cette valeur n'est disponible que :

- Pour les unités de contrôle MasterPact MTZ MicroLogic 7.0 X exprimé en % du seuil I∆n
- Pour les déclencheurs MasterPact NT/NW et ComPacT NS MicroLogic 7.0, exprimé en % du seuil l∆n
- Pour les déclencheurs ComPacT NSX MicroLogic 7.2 et 7.3, exprimé en % du seuil lΔn

Tension

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2EFD	12030	L	V	INT16U	0-1200	Е	E/P/H	х	Tension phase à phase efficace V12
0x2EFE	12031	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase à phase efficace V23
0x2EFF	12032	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase à phase efficace V31
0x2F00	12033	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase à neutre efficace V1N ⁽¹⁾
0x2F01	12034	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase à neutre efficace V2N(1)
0x2F02	12035	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase à neutre efficace V3N(1)

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de tension de neutre externe (ENCT).

Fréquence

Lorsque le déclencheur MicroLogic ne peut pas calculer la fréquence, il renvoie le message Not Evaluated = 32768 (0x8000).

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description	
0x2F03	12036	L	0,1 Hz	INT16U	400-600	Е	P/H	Х	Fréquence	
0x2F04	12037	L	0,1 Hz	INT16U	400-600	Е	P/H	Х	Fréquence maximum (1)	
(4) Catta valant at utilitati abla ava la commanda de utilitati at an unique un la communicación										

⁽¹⁾ Cette valeur est réinitialisable avec la commande de réinitialisation minimum/maximum.

Puissance

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x2F05	12038	L	0,1 kW	INT16	-32767- +32767	Е	E/P/H	Х	Puissance active sur la phase 1 : P1 (1) (2)
0x2F06	12039	L	0,1 kW	INT16	-32767- +32767	E	E/P/H	Х	Puissance active sur la phase 2 : P2 (1) (2)
0x2F07	12040	L	0,1 kW	INT16	-32767- +32767	E	E/P/H	Х	Puissance active sur la phase 3 : P3 (1) (2)

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2F08	12041	L	0,1 kW	INT16	-32767- +32767	Е	E/P/H	Х	Puissance active totale : Ptot (2)
0x2F09	12042	L	0,1 kV- AR	INT16	-32767- +32767	E	E/P/H	Х	Puissance réactive sur la phase 1 : Q1 (1) (2)
0x2F0A	12043	L	0,1 kV- AR	INT16	-32767- +32767	Е	E/P/H	Х	Puissance réactive sur la phase 2 : Q2 (1) (2)
0x2F0B	12044	L	0,1 kV- AR	INT16	-32767- +32767	Е	E/P/H	Х	Puissance réactive sur la phase 3 : Q3 (1) (2)
0x2F0C	12045	L	0,1 kV- AR	INT16	-32767- +32767	Е	E/P/H	Х	Puissance réactive totale : Qtot (2)
0x2F0D	12046	L	0,1 kVA	INT16U	0-32767	E	E/P/H	Х	Puissance apparente sur la phase 1 : S1 (1)
0x2F0E	12047	L	0,1 kVA	INT16U	0-32767	Е	E/P/H	Х	Puissance apparente sur la phase 2 : S2 (1)
0x2F0F	12048	L	0,1 kVA	INT16U	0-32767	Е	E/P/H	Х	Puissance apparente sur la phase 3 : S3 (1)
0x2F10	12049	L	0,1 kVA	INT16U	0-32767	Е	E/P/H	Х	Puissance apparente totale : Stot

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de courant de neutre externe (ENCT).

- du registre 3316 pour les disjoncteurs ComPacT NSX, ComPacT NS et MasterPact NT/NW;
- du registre 8405 pour des disjoncteurs MasterPact MTZ.

Energie

L'énergie est enregistrée au format big-endian : le registre de poids fort est transmis d'abord, celui de poids faible ensuite.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description		
0x2F11- 0x2F12	12050- 12051	L	kWh	INT32	-1 999 999 999 - +1 999 999 999	E	E/P/H	Х	Energie active : Ep (1)		
0x2F13- 0x2F14	12052- 12053	L	kVARh	INT32	-1 999 999 999 - +1 999 999 999	Е	E/P/H	Х	Energie réactive : Eq (1)		
0x2F15- 0x2F16	12054- 12055	L	kWh	INT32U	0-1 999 999 999	E	P/H	Х	Energie active comptée positivement : EpIn		
0x2F17- 0x2F18	12056- 12057	L	kWh	INT32U	0-1 999 999 999	Е	P/H	Х	Energie active comptée négativement : EpOut		
0x2F19- 0x2F1A	12058- 12059	L	kVARh	INT32U	0-1 999 999 999	Е	P/H	Х	Energie réactive comptée positivement : EqIn		
0x2F1B- 0x2F1C	12060- 12061	L	kVARh	INT32U	0-1 999 999 999	E	P/H	Х	Energie réactive comptée négativement : EqOut		
0x2F1D- 0x2F1E	12062- 12063	L	kVAh	INT32U	0-1 999 999 999	Е	E/P/H	Х	Energie apparente totale : Es		
0x2F1F- 0x2F20	12064- 12065	L	kWh	INT32U	0-1 999 999 999	E	_	X	Energie active comptée positivement (non réinitialisable) : Epln		
0x2F21- 0x2F22	12066- 12067	L	kWh	INT32U	0-1 999 999 999	E	-	Х	Energie active comptée négativement (non réinitialisable) : EpOut		
0x2F23- 0x2F2E	12068- 12079	-	_	_	_	_	_	_	Réservé		
(1) Cette v	(1) Cette valeur est toujours positive avec les déclencheurs MicroLogic E pour les disjoncteurs MasterPact NT/NW et ComPacT NS.										

⁽²⁾ Le signe de la puissance active et réactive dépend de la configuration :

Valeurs de demande de courant

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2F2F	12080	L	Α	INT16U	0-32767	Е	E/P/H	Х	Valeur de demande de courant sur la phase 1 : I1 Dmd
0x2F30	12081	L	A	INT16U	0-32767	Е	E/P/H	Х	Valeur de demande de courant sur la phase 2 : l2 Dmd
0x2F31	12082	L	Α	INT16U	0-32767	Е	E/P/H	Х	Valeur de demande de courant sur la phase 3 : I3 Dmd
0x2F32	12083	L	А	INT16U	0-32767	Е	E/P/H	Х	Valeur de demande de courant sur le neutre : IN Dmd (1)

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de courant de neutre externe (ENCT).

Valeurs de demande de puissance

- Lorsque la fenêtre est du type bloqué, cette valeur est mise à jour à la fin de l'intervalle de la fenêtre.
- · Pour la fenêtre glissante,
 - Si la durée configurée de la fenêtre est inférieure ou égale à 15 minutes, la valeur de demande est mise à jour toutes les 15 secondes.
 - Si la durée configurée de la fenêtre est supérieure ou égale à 15 minutes, la valeur de demande est mise à jour toutes les 1 minute.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2F33	12084	L	0,1 kW	INT16U	0-32767	Е	E/P/H	Х	Demande de puissance active totale : P Dmd
0x2F34	12085	L	0,1 kV- AR	INT16U	0-32767	Е	P/H	Х	Demande de puissance réactive totale : Q Dmd
0x2F35	12086	L	0,1 kVA	INT16U	0-32767	Е	P/H	Х	Demande de puissance apparente totale : S Dmd
0x2F36- 0x2F38	12087- 12089	-	_	_	_	_	-	_	Réservé

Valeurs de tension maximum

Les valeurs de tension maximum sont réinitialisables avec la commande de réinitialisation minimum/maximum.

Registre = 0 si tension < 25 V.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x2F39	12090	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension efficace entre phases maximum V12
0x2F3A	12091	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension efficace entre phases maximum V23
0x2F3B	12092	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension efficace entre phases maximum V31
0x2F3C	12093	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase-neutre efficace maximum V1N (1)
0x2F3D	12094	L	V	INT16U	0-1200	Е	E/P/H	Х	Tension phase-neutre efficace maximum V2N (1)

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2F3E	12095	L	V	INT16U	0-1200	E	E/P/H	Х	Tension phase-neutre efficace maximum V3N (1)

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de tension de neutre externe (ENCT).

Facteur de puissance

Le signe du facteur de puissance fondamentale $(\cos\phi)$ dépend de la configuration MicroLogic.

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2F3F	12096	L	0,01	INT16	-100– +100	E	E/P/H	Х	Facteur de puissance sur la phase 1 : PF1 (1)
0x2F40	12097	L	0,01	INT16	-100– +100	E	E/P/H	Х	Facteur de puissance sur la phase 2 : PF2 (1)
0x2F41	12098	L	0,01	INT16	-100– +100	E	E/P/H	Х	Facteur de puissance sur la phase 3 : PF3 (1)
0x2F42	12099	L	0,01	INT16	-100– +100	E	E/P/H	Х	Facteur de puissance total : PF
0x2F43	12100	L	0,01	INT16	-100– +100	Е	Н	Х	Facteur de puissance fondamentale sur la phase 1 : cos\phi1 (1)
0x2F44	12101	L	0,01	INT16	-100– +100	E	Н	Х	Facteur de puissance fondamentale sur la phase 2 : $\cos \phi 2$ (1)
0x2F45	12102	L	0,01	INT16	-100– +100	Е	Н	Х	Facteur de puissance fondamentale sur la phase 3 : cos\(\phi^3 \) (1)
0x2F46	12103	L	0,01	INT16	-100– +100	E	Н	х	Facteur de puissance fondamentale total : cos¢

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de tension de neutre externe (ENCT).

Distorsion harmonique totale (THD)

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x2F47	12104	L	0,1 %	INT16U	0-5000	Е	Н	Х	Distorsion harmonique totale de V12 comparée à la fondamentale
0x2F48	12105	L	0,1 %	INT16U	0-5000	Е	Н	Х	Distorsion harmonique totale de V23 comparée à la fondamentale
0x2F49	12106	L	0,1 %	INT16U	0-5000	Е	Н	Х	Distorsion harmonique totale de V31 comparée à la fondamentale
0x2F4A	12107	L	0,1 %	INT16U	0-5000	E	Н	Х	Distorsion harmonique totale de V1N comparée à la fondamentale (1)
0x2F4B	12108	L	0,1 %	INT16U	0-5000	Е	Н	Х	Distorsion harmonique totale de V2N comparée à la fondamentale (1)
0x2F4C	12109	L	0,1 %	INT16U	0-5000	E	Н	Х	Distorsion harmonique totale de V3N comparée à la fondamentale (1)
0x2F4D	12110	L	0,1 %	INT16U	0-5000	E	Н	Х	Distorsion harmonique totale de I1 comparée à la fondamentale

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	х	Description
0x2F4E	12111	L	0,1 %	INT16U	0-5000	E	Н	Х	Distorsion harmonique totale de I2 comparée à la fondamentale
0x2F4F	12112	L	0,1 %	INT16U	0-5000	E	Н	Х	Distorsion harmonique totale de I3 comparée à la fondamentale
0x2F50	12113	L	0,1 %	INT16U	0-5000	E	Н	Х	Distorsion harmonique totale du courant total comparée à la fondamentale

⁽¹⁾ Cette valeur n'est pas accessible aux applications de moteur et en cas de disjoncteurs tripolaires sans transformateur de tension de neutre externe (ENCT).

Compteurs

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Description
0x2F7F	12160	L	-	INT16U	0-32766	A/E	A/E/P/H	Х	Compteur de déclenchement
0x2F80	12161	L	-	INT16U	0-32766	A/E	A/E/P/H	Х	Compteur d'alarmes avec niveau de priorité = 3 (élevée)
0x2F81	12162	L	-	INT16U	0-32766	A/E	A/E/P/H	Х	Compteur d'alarmes avec niveau de priorité = 2 (moyenne)
0x2F82	12163	L	_	INT16U	0-32766	A/E	A/E/P/H	Х	Compteur d'alarmes avec niveau de priorité = 1 (basse)

Divers

Adresse	Registre	L/E	Unité	Туре	Plage	A/E	A/E/P/H	Х	Bit	Description
0x2F83	12164	L	-	INT16U	_	A/E	A/E/P/H	Х	-	Validité du bit d'inhibition de la commande de fermeture du disjoncteur
									0	Validité du bit d'inhibition de la commande de fermeture du disjoncteur par le module IO
									1	Validité du bit d'inhibition de la commande de fermeture du disjoncteur par le contrôleur distant
									2-15	Réservé
0x2F84	12165	L	-	INT16U	_	A/E	A/E/P/H	Х	_	Etat du bit d'inhibition de la commande de fermeture du disjoncteur
									0	Etat du bit d'inhibition de la commande de fermeture du disjoncteur par le module IO
									1	Etat du bit d'inhibition de la commande de fermeture du disjoncteur par le contrôleur distant
									2-15	Réservé
0x2F85- 0x2FA7	12166- 12200	_	-	-	-	_	_	-	_	Réservé

Données du déclencheur MicroLogic pour les disjoncteurs ComPacT NS

Contenu de cette partie

Registres du déclencheur MicroLogic	117
Fichiers des déclencheurs MicroLogic	
Commandes du déclencheur MicroLogic	

Registres du déclencheur MicroLogic

Contenu de ce chapitre

Mesures en temps réel	118
Valeurs minimales/maximales des mesures en temps réel	
Mesures de l'énergie	
Mesures de la demande	125
dentification du déclencheur MicroLogic	128
Etat	131
Historique des alarmes	132
Historique des déclenchements	134
Paramètres de protection de base	138
Paramètres de protection avancée	
Paramètres de mesure	152
nformations horodatées	
ndicateurs de maintenance	159
Divers	160

Mesures en temps réel

Description générale

Le gestionnaire de mesure actualise toutes les secondes les mesures en temps réel. Les mesures en temps réel incluent :

- · la tension et le déséquilibre des tensions
- le courant et le déséquilibre des courants
- la puissance active, réactive, apparente et de distorsion
- le facteur de puissance et le facteur de puissance de la fondamentale
- · la fréquence
- · la tension et le courant de la fondamentale
- · la demande de puissance active, réactive et apparente de la fondamentale
- la distorsion harmonique totale (THD) par rapport à la fondamentale
- la distorsion harmonique totale (THD) par rapport à la valeur efficace
- le déphasage entre tension et courant
- le facteur K
- · le facteur de crête
- le déphasage entre tensions

Tension

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x03E7	1 000	L	1	٧	INT16U	0-1200	E/P	Tension phase à phase efficace V12
0x03E8	1001	L	1	٧	INT16U	0-1200	E/P	Tension phase à phase efficace V23
0x03E9	1002	L	1	V	INT16U	0-1200	E/P	Tension phase à phase efficace V31
0x03EA	1003	L	1	V	INT16U	0-1200	E/P	Tension phase à neutre efficace V1N(1)
0x03EB	1004	L	1	V	INT16U	0-1200	E/P	Tension phase à neutre efficace V2N(1)
0x03EC	1005	L	1	V	INT16U	0-1200	E/P	Tension phase à neutre efficace V3N(1)
0x03ED	1006	L	1	V	INT16U	0-1200	E/P	Moyenne arithmétique de V12, V23 et V31 : (V12 + V23 + V31) / 3 = V _{moy} L-L
0x03EE	1007	L	1	V	INT16U	0-1200	E/P	Moyenne arithmétique de V1N, V2N et V3N : (V1N + V2N + V3N) / 3 = V _{moy} L-N

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 30 ou 31. Consultez la section Type de système, page 152.

Déséquilibre de tension

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x03EF	1008	L	1- 0	%	INT16	-1000— +1000	E/P	Déséquilibre de la tension phase à phase V12 par rapport à la moyenne arithmétique des tensions phase-phase
0x03F0	1009	L	1- 0	%	INT16	-1000— +1000	E/P	Déséquilibre de la tension phase à phase V23 par rapport à la moyenne arithmétique des tensions phase-phase
0x03F1	1010	L	1- 0	%	INT16	-1000— +1000	E/P	Déséquilibre de la tension phase à phase V31 par rapport à la moyenne arithmétique des tensions phase-phase

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x03F2	1011	L	1- 0	%	INT16	-1000— +1000	E/P	Déséquilibre de la tension phase- neutre V1N par rapport à la moyenne arithmétique des tensions phase- neutre (1)
0x03F3	1012	L	1- 0	%	INT16	-1000— +1000	E/P	Déséquilibre de la tension phase- neutre V2N par rapport à la moyenne arithmétique des tensions phase- neutre (1)
0x03F4	1013	L	1- 0	%	INT16	-1000— +1000	E/P	Déséquilibre de la tension phase- neutre V3N par rapport à la moyenne arithmétique des tensions phase- neutre (1)
0x03F5	1014	L	1- 0	%	INT16	-1000— +1000	E/P	Valeur maximale du déséquilibre des tensions phase à phase des registres 1008, 1009 et 1010
0x03F6	1015	L	1- 0	%	INT16	-1000— +1000	E/P	Valeur maximum du déséquilibre des tensions phase-neutre des registres 1011, 1012 et 1013 (1)

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 30 ou 31. Consultez la section Type de système, page 152.

Courant

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
03x0F7	1016	L	1	Α	INT16U	0-32767	A/E/P	Courant efficace sur la phase 1:11
0x03F8	1017	L	1	Α	INT16U	0-32767	A/E/P	Courant efficace sur la phase 2:12
0x03F9	1018	L	1	Α	INT16U	0-32767	A/E/P	Courant efficace sur la phase 3:13
0x03FA	1019	L	1	Α	INT16U	0-32767	A/E/P	Courant efficace sur le neutre : IN (1)
0x03FB	1020	L	1	Α	INT16U	0-32767	A/E/P	Valeur maximum de I1, I2, I3 et IN
0x03FC	1021	L	1	%lg	INT16U	0-32767	A/E/P	Courant de défaut de terre (2)
0x03FD	1022	L	1	mA	INT16U	0-32767	A/P	Courant Earth-leakage (3) (4)
0x03FE- 0x0401	1023-1026	_	-	-	_	_	-	Réservé
0x0402	1027	L	1	А	INT16U	0-32767	E/P	Moyenne arithmétique de I1, I2 et I3 : (I1 + I2 + I3) / 3 = I _{moy}

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 31 ou 40. Consultez la section Type de système, page 152.

- (2) Accessible uniquement avec les déclencheurs MicroLogic 5.0 P et 6.0 A/E/P.
- (3) Accessible uniquement avec les déclencheurs MicroLogic 7.0 A/P.
- (4) Si le courant délivré dépasse 32767 A, le registre se bloque à la valeur 32767.

Déséquilibre des courants

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0403	1028	L	10	%	INT16	-1000— +1000	E/P	Déséquilibre du courant l1 par rapport à la moyenne arithmétique des courants de phase
0x0404	1029	L	10	%	INT16	-1000– +1000	E/P	Déséquilibre du courant l2 par rapport à la moyenne arithmétique des courants de phase
0x0405	1030	L	10	%	INT16	-1000— +1000	E/P	Déséquilibre du courant l3 par rapport à la moyenne arithmétique des courants de phase

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0406	1031	L	10	%	INT16	-1000– +1000	E/P	Déséquilibre du courant IN par rapport à la moyenne arithmétique des courants de phase (1)
0x0407	1032	L	10	%	INT16	-1000– +1000	E/P	Valeur maximum du déséquilibre des courants des registres 1028, 1029 et 1030

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 31 ou 40. Consultez la section Type de système, page 152.

Puissance active

Le signe de la puissance active dépend de la configuration du registre 3316, page 152.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0409	1034	L	1	kW	INT16	-32767- +32767	E/P	Puissance active sur la phase 1 : P1 (1)
0x040A	1035	L	1	kW	INT16	-32767- +32767	E/P	Puissance active sur la phase 2 : P2 (1)
0x040B	1036	L	1	kW	INT16	-32767- +32767	E/P	Puissance active sur la phase 3 : P3 ⁽¹⁾
0x040C	1037	L	1	kW	INT16	-32767- +32767	E/P	Puissance active totale : Ptot

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 30 ou 31. Consultez la section Type de système, page 152.

Puissance réactive

Le signe de la puissance réactive dépend de la configuration du registre 3316, page 152.

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x040D	1038	L	1	kVAR	INT16	-32767- +32767	E/P	Puissance réactive sur la phase 1 : Q1
0x040E	1039	L	1	kVAR	INT16	-32767- +32767	E/P	Puissance réactive sur la phase 2 : Q2
0x040F	1040	L	1	kVAR	INT16	-32767- +32767	E/P	Puissance réactive sur la phase 3 : Q3
0x0410	1041	L	1	kVAR	INT16	-32767- +32767	E/P	Puissance réactive totale : Qtot

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 30 ou 31. Consultez la section Type de système, page 152.

Puissance apparente

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0411	1042	L	1	kVA	INT16U	0-32767	E/P	Puissance apparente sur la phase 1 : S1 (1)
0x0412	1043	L	1	kVA	INT16U	0-32767	E/P	Puissance apparente sur la phase 2 : S2 (1)
0x0413	1044	L	1	kVA	INT16U	0-32767	E/P	Puissance apparente sur la phase 3 : S3 (1)

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0414	1045	L	1	kVA	INT16U	0-32767	E/P	Puissance apparente totale : Stot

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 30 ou 31. Consultez la section Type de système, page 152.

Facteur de puissance

Le signe du facteur de puissance dépend de la configuration du registre 3318, page 153.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0415	1046	L	1- 0- 0- 0	_	INT16	-1000— +1000	E/P	Facteur de puissance sur la phase 1 : PF1 (valeur absolue égale à P1S1 /) (1)
0x0416	1047	L	1- 0- 0- 0	-	INT16	-1000— +1000	E/P	Facteur de puissance sur la phase 2 : PF2 (valeur absolue égale à P2S2 /) (1)
0x0417	1048	L	1- 0- 0- 0	_	INT16	-1000— +1000	E/P	Facteur de puissance sur la phase 3 : PF3 (valeur absolue égale à P3S3 /) (1)
0x0418	1049	L	1- 0- 0- 0	_	INT16	-1000— +1000	E/P	Facteur de puissance total : PF (valeur absolue égale à Ptotal / Stotal) (1)

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 30 ou 31. Consultez la section Type de système, page 152.

Fréquence

Lorsque le déclencheur MicroLogic ne peut pas calculer la fréquence, il renvoie le message Not Evaluated = 32768 (0x8000).

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x041D	1054	L	10	Hz	INT16U	400-600	Р	Fréquence du système : F

Valeurs minimales/maximales des mesures en temps réel

Règle des mesures minimales/maximales

Les mesures minimales et maximales prennent en compte la valeur relative des mesures en temps réel. La règle suivante s'applique donc :

-3800<-400<0<200<600.

Dans ce cas:

- valeur minimale = -3800
- valeur maximale = 600

NOTE: Cette règle ne s'applique ni au facteur de puissance (PF), ni au facteur de puissance fondamentale $(\cos\phi)$:

- PFmax (ou cosφ min.) est obtenu pour la valeur négative la plus élevée de PF (ou cosφ).

La commande de réinitialisation minimum/maximum (code de commande = 46728) peut réinitialiser le contenu des registres de mesures en temps réel minimales/maximales.

Minimum des mesures en temps réel

Les registres 1300 à 1599 détiennent les valeurs minimales des paramètres de mesure en temps réel :

- Disponible uniquement avec les déclencheurs MicroLogic E et P.
- Le registre de la valeur minimale d'un paramètre de mesure en temps réel est égale au registre du paramètre de mesure en temps réel plus 300.

Exemples:

- Le registre 1300 détient la valeur minimale de la tension phase à phase V12 (registre 1000).
- Le registre 1316 possède la valeur minimale du courant sur la phase 1 (registre 1016).
- L'ordre des registres est le même que celui des variables de mesure en temps réel.
- Les facteurs d'échelle des valeurs minimales sont les mêmes que ceux des paramètres de mesure en temps réel.
- Les valeurs minimales des moyennes arithmétiques correspondant à un déséquilibre de tension (registres 1306 à 1315) et de courant (registres 1327 à 1332) ne sont pas disponibles avec les déclencheurs MicroLogicE.

Maximum des mesures en temps réel

Les registres 1600 à 1899 détiennent les valeurs maximales des paramètres de mesure en temps réel :

• Disponible uniquement avec les déclencheurs MicroLogic E et P.

• Le registre de la valeur maximale d'un paramètre de mesure en temps réel est égal au registre du paramètre de mesure en temps réel plus 600.

Exemples:

- Le registre 1600 détient la valeur maximale de la tension phase à phase V12 (registre 1000).
- Le registre 1616 possède la valeur maximale du courant sur la phase 1 (registre 1016).
- L'ordre des registres est le même que celui des variables de mesure en temps réel.
- Les facteurs d'échelle des valeurs maximales sont les mêmes que ceux des paramètres de mesure en temps réel.
- Les valeurs maximales des expressions arithmétiques correspondant à un déséquilibre de tension (registres 1606 à 1615) et de courant (registres 1627 à 1632) ne sont pas disponibles avec les déclencheurs MicroLogicE.

Mesures de l'énergie

Description générale

Les mesures de l'énergie incluent :

- l'énergie active Ep
- l'énergie réactive Eq
- · l'énergie apparente Es
- l'énergie active comptée positivement (EpIn) ou négativement (EpOut), selon la configuration du registre 3316, page 152
- l'énergie réactive comptée positivement (EqIn) ou négativement (EqOut), selon la configuration du registre 3316, page 152
- l'énergie active et l'énergie réactive sont cumulées selon la configuration du registre 3324 (mode absolu par réglage d'usine), page 153

La commande de réinitialisation de minimum/maximum (code de commande = 46728) peut réinitialiser le contenu des registres de mesures de l'énergie.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x07CF- 0x07D2	2000-2003	L	1	kWh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	E/P	Energie active totale : Ep (1)
0x07D3- 0x07D6	2004-2007	L	1	kVARh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	E/P	Energie réactive totale : Eq
0x07D7- 0x07DA	2008-2011	L	1	kWh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	Р	Energie active comptée positivement : EpIn
0x07DB- 0x07DE	2012-2015	L	1	kWh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	Р	Energie active comptée négativement : EpOut
0x07DF- 0x07E2	2016-2019	L	1	kVARh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	Р	Energie réactive comptée positivement : EqIn
0x07E3- 0x07E6	2020-2023	L	1	kVARh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	Р	Energie réactive comptée négativement : EqOut
0x07E7- 0x07EA	2024-2027	L	1	kVAh	MO- D10000	-10 ¹⁶ à +10 ¹⁶	E/P	Energie apparente totale : Es
	e active totale et	l'énergie	réactiv	e totale sont		mptées positivement	t avec le déclenc	Es

NOTE:

- L'écran du déclencheur MicroLogic E affiche des valeurs positives (uniquement) jusqu'à 999 999 999 kWh. Au delà de cette valeur, l'écran du déclencheur MicroLogic E affiche 999 999 999 kWh.
- L'écran du déclencheur MicroLogic P affiche des valeurs positives jusqu'à 99 999 999 kWh. Au-delà de cette valeur, l'écran du déclencheur MicroLogic P affiche 0, puis 1 kWh.
- L'écran du déclencheur MicroLogic P affiche des valeurs négatives jusqu'à -99 999 999 kWh. Au-delà de cette valeur, l'écran du déclencheur MicroLogic P affiche 0, puis -1 kWh.
- Le format MOD10000 est expliqué dans la description des types de données, page 69.

Le comportement est identique pour l'énergie réactive et l'énergie apparente.

Mesures de la demande

Description générale

Les registres de demande incluent :

- Demande de courant
- Demande de puissance active, réactive et apparente

La durée de la fenêtre de la demande de courant dépend de la configuration du registre 3352. Reportez-vous à la section Temps de demande, page 154.

La durée de la fenêtre et le type de fenêtre de la demande de puissance dépendent de la configuration des registres 3354 et 3355. Reportez-vous à la section Temps de demande, page 154.

- Lorsque la fenêtre est du type bloqué, cette valeur est mise à jour à la fin de l'intervalle de la fenêtre.
- · Pour la fenêtre glissante,
 - Si la durée configurée de la fenêtre est inférieure ou égale à 15 minutes, la valeur de demande est mise à jour toutes les 15 secondes.
 - Si la durée configurée de la fenêtre est supérieure ou égale à 15 minutes, la valeur de demande est mise à jour toutes les 1 minute.

La commande de réinitialisation minimum/maximum (code de commande = 46728) peut réinitialiser le contenu des registres de mesures de la demande de crête

Demande de courant

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0897	2200	L	1	А	INT16U	0-32767	E/P	Demande de courant sur la phase 1 : I1 Dmd (2)
0x0898	2201	L	1	А	INT16U	0-32767	E/P	Demande de courant sur la phase 2 : l2 Dmd (2)
0x0899	2202	L	1	А	INT16U	0-32767	E/P	Demande de courant sur la phase 3 : I3 Dmd (2)
0x089A	2203	L	1	А	INT16U	0-32767	E/P	Demande de courant sur le neutre : IN Dmd (1) (2)
0x089B	2204	L	1	A	INT16U	0-32767	E/P	Demande de courant maximum sur la phase 1 depuis la dernière réinitialisation : I1 Peak Dmd
0x089C	2205	L	1	A	INT16U	0-32767	E/P	Demande de courant maximum sur la phase 2 depuis la dernière réinitialisation : 12 Peak Dmd
0x089D	2206	L	1	А	INT16U	0-32767	E/P	Demande de courant maximum sur la phase 3 depuis la dernière réinitialisation : l3 Peak Dmd
0x089E	2207	L	1	A	INT16U	0-32767	E/P	Demande de courant maximum sur le neutre depuis la dernière réinitialisation : IN Peak Dmd (1)

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 31 ou 40. Consultez la section Type de système, page 152.

⁽²⁾ Seul l'algorithme thermique est disponible avec les déclencheurs MicroLogic E tandis que les déclencheurs MicroLogic P acceptent l'algorithme thermique et l'algorithme de moyenne arithmétique.

Demande de puissance active

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x08AF	2224	L	1	kW	INT16U	0-32767	E/P	Demande de puissance active totale : P Dmd (1) (3)
0x08B0	2225	L	1	kW	INT16U	0-32767	E/P	Demande de puissance active totale maximum depuis la dernière réinitialisation : P Peak Dmd
0x08B1	2226	L	1	kW	INT16U	0-32767	Р	Demande de puissance active prévue à la fin de la fenêtre (2)
0x08B2	2227	L	1 000	_	INT16	-1000- +1000	Р	Facteur de puissance total lors de la dernière demande de puissance active maximale
0x08B3	2228	L	1	kVAR	INT16U	0-32767	Р	Demande de puissance réactive lors de la dernière demande de puissance active maximale
0x08B4	2229	L	1	kVA	INT16U	0-32767	Р	Demande de puissance apparente lors de la dernière demande de puissance active maximale

⁽¹⁾ Lorsque la fenêtre est du type bloqué, cette valeur est mise à jour à la fin de l'intervalle de la fenêtre. Quand la fenêtre est de type glissante, la valeur est mise à jour toutes les 15 secondes.

Demande de puissance réactive

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x08B5	2230	L	1	kVAR	INT16U	0-32767	Р	Demande de puissance réactive totale : Q Dmd (1)
0x08B6	2231	L	1	kVAR	INT16U	0-32767	Р	Demande de puissance réactive maximale depuis la dernière réinitialisation : Q Peak Dmd
0x08B7	2232	L	1	kVAR	INT16U	0-32767	Р	Demande de puissance réactive prévue à la fin de la fenêtre (2)
0x08B8	2233	L	1 000	_	INT16	-1000— +1000	Р	Facteur de puissance total lors de la dernière demande de puissance réactive maximale
0x08B9	2234	L	1	kW	INT16U	0-32767	Р	Demande de puissance active lors de la dernière demande de puissance réactive maximale
0x08BA	2235	L	1	kVA	INT16U	0-32767	Р	Demande de puissance apparente lors de la dernière demande de puissance réactive maximale

⁽¹⁾ Lorsque la fenêtre est du type bloqué, cette valeur est mise à jour à la fin de l'intervalle de la fenêtre. Quand la fenêtre est de type glissante, la valeur est mise à jour toutes les 15 secondes.

Demande de puissance apparente

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x08BB	2236	L	1	kVA	INT16U	0-32767	E/P	Demande de puissance apparente totale : S Dmd (1)
0x08BC	2237	L	1	kVA	INT16U	0-32767	E/P	Demande de puissance apparente totale maximale depuis la dernière réinitialisation : S Peak Dmd

⁽²⁾ La valeur est mise à jour toutes les 15 secondes, pour les fenêtres glissantes comme bloquées.

⁽³⁾ Seul l'algorithme thermique est disponible avec les déclencheurs MicroLogic E, tandis que les déclencheurs MicroLogic P acceptent l'algorithme thermique et l'algorithme de moyenne arithmétique.

 $^{(2)\,}La\,valeur\,est\,mise\,\grave{a}\,jour\,toutes\,les\,15\,secondes,\,pour\,les\,fen{\^{e}tres}\,glissantes\,comme\,bloqu{\'e}es.$

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x08BD	2238	L	1	kVA	INT16U	0-32767	Р	Demande de puissance apparente prévue à la fin de la fenêtre (2)
0x08BE	2239	L	1 000	_	INT16	-1000— +1000	Р	Facteur de puissance total lors de la dernière demande de puissance apparente maximale
0x08BF	2240	L	1	kW	INT16U	0-32767	Р	Demande de puissance active lors de la dernière demande de puissance apparente maximale
0x08C0	2241	L	1	kVAR	INT16U	0-32767	Р	Demande de puissance réactive lors de la dernière demande de puissance apparente maximale

⁽¹⁾ Lorsque la fenêtre est du type bloqué, cette valeur est mise à jour à la fin de l'intervalle de la fenêtre. Quand la fenêtre est de type glissante, la valeur est mise à jour toutes les 15 secondes.

⁽²⁾ La valeur est mise à jour toutes les 15 secondes, pour les fenêtres glissantes comme bloquées.

Identification du déclencheur MicroLogic

Identification du gestionnaire de mesure

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0CE6- 0x0CE7	3303-3304	L/E	-	_	CHAÎNE D'OC- TETS	0x00-0x7F	P	Identifiant court du gestionnaire de mesure, codé sur 4 caractères ASCII. Réglage d'usine : "défini"
0x0CE8- 0x0CEF	3305-3312	L/E	-	_	CHAÎNE D'OC- TETS	0x00-0x7F	P	Identifiant long du gestionnaire de mesure, codé sur 16 caractères ASCII. Réglage d'usine : "veuillez me configurer"

Numéro de série

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x21FB- 0x21FE	8700-8703	L	1	-	CHAÎNE D'OC- TETS	_	A/E/P	Numéro de série codé en caractères ASCII.

Version du matériel

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2204	8709	L	-	-	INT16U	0x0000- 0xFFFF	Р	Version du matériel du déclencheur MicroLogic.

Version du firmware

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2205	8710	L	1	_	INT16	_	A/E/P	Version de firmware du déclencheur MicroLogic Par exemple, la valeur 8244 correspond à la version 8.244.

Identification du produit

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x220B	8716	L	1	-	INT16U	15133- 15137	A/E/P	Identification du produit avec le gestionnaire de protection :
								15131 = MicroLogic A
								15137 = MicroLogic E
								15133 = MicroLogic P
0x0EE7	3816	L	1	-	INT16U	15134- 15138	E/P	Identification du produit avec le gestionnaire de mesure :
								15138 = MicroLogic E
								15134 = MicroLogic P

Type de protection

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2223	8740	L	1	_	CHAÎNE	20-70	A/E/P	Type de protection :
					D'OC- TETS			"20" = MicroLogic 2.0
								"30" = MicroLogic 3.0
								"40" = MicroLogic 4.0
								"50" = MicroLogic 5.0
								"60" = MicroLogic 6.0
								"70" = MicroLogic 7.0

Type de mesure

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x2224	8741	L	1	_	CHAÎNE	0x2041- 0x204D	A/E/P	Type de mesure :
					D'OC- TETS	0X204D		0x2041 = « espace » et « A »
								0x2045 = « espace » et « E »
								0x2050 = « espace » et « P »
								Ou type d'application :
								0x204D = « espace » et « M »

Calibreur long retard

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x2225	8742	L	1	-	INT16U	0-15	A/E/P	Type de calibreur Long retard :
								0 = absent
								1 = IEC standard
								2 = IEC bas
								3 = IEC haut
								7 = UL-A
								8 = UL-B
								9 = UL-C
								10 = désactivé
								11 = UL-D
								12 = UL-E
								13 = UL-F
								14 = UL-G
								15 = UL-H

Identification du gestionnaire de protection

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2583- 0x2584	9604-9605	L/E	_	_	CHAÎNE D'OC- TETS	-	P	Identifiant court du gestionnaire de protection, codé sur 4 caractères ASCII. Réglage d'usine : "défini"
0x2585- 0x258C	9606-9613	L/E	_	_	CHAÎNE D'OC- TETS	-	P	Identifiant long du gestionnaire de protection, codé sur 16 caractères ASCII. Réglage d'usine : "veuillez me configurer"

Type de disjoncteur

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2591	9618	L/E	-	-	INT16U	0-2	P	0 = Disjoncteur tripolaire sans transformateur de courant neutre externe (réglage d'usine) 1 = Disjoncteur quadripolaire 2 = Disjoncteur tripolaire avec transformateur de courant neutre externe

Caractéristiques du disjoncteur

Les caractéristiques peuvent être :

- définies via l'IHM MicroLogic dans Micrologic setup > Breaker selection
- téléchargées à l'aide du boîtier test

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x2675	9846	L	-	-	INT16U	0-3	Р	Standard :
								0 = UL
								1 = CEI
								2 = ANSI
								3 = IEC/GB
0x2676	9847	L	-	-	INT16U	0-2	Р	Туре :
								0 = MasterPact
								1 = ComPact NS
								2 =
0x2677- 0x267C	9848-9853	L	-	_	CHAÎNE D'OC- TETS	_	Р	Chaînes de caractères ASCII (par exemple, 'NT08N')

Etat

Etat de la protection

Le tableau suivant détaille les valeurs pour chaque bit des registres de seuil de déclenchement de la protection :

- bit d'état de la protection = 0 : le seuil de déclenchement de la protection n'est pas dépassé.
- bit d'état de la protection = 1 : le seuil de déclenchement de la protection est dépassé, même si le délai n'a pas expiré.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description	
0x229D	8862	L	-	-	INT16U	_	E/P	0	Etat de la protection Long retard	
								1-15	Réservé	
0x229E	0x229E 8863	L	-	-	INT16U	_	Р	0	Etat du déséquilibre de courant	
								1	Etat du courant maximum sur la phase 1	
								2	Etat du courant maximum sur la phase 2	
								3	Etat du courant maximum sur la phase 3	
								4	Etat du courant maximum sur le neutre	
								5	Etat de la tension minimum	
								6	Etat de la tension maximum	
								7	Etat du déséquilibre des tensions	
								8	Etat de la puissance maximum	
									9	Etat de la puissance déwattée
								10	Etat de la fréquence minimum	
								11	Etat de la fréquence maximum	
								12	Etat de la rotation de phase	
								13	Etat du délestage de charge en fonction du courant	
								14	Etat du délestage de charge en fonction de la puissance	
								15	Réservé	
0x229F	8864	L	-	_	INT16U	-	E/P	0	Etat de l'alarme de défaut à la terre	
							Р	1	Etat de l'alarme de protection différentielle	
							_	2-15	Réservé	

Historique des alarmes

Description générale

Les registres d'historique des alarmes décrivent les 10 dernières alarmes déclenchées. Le format de l'historique des alarmes correspond à une série de dix enregistrements stockés dans une pile de type FIFO (premier entré, premier sorti). Le dernier enregistrement efface le plus ancien. Chaque enregistrement se compose de 15 registres décrivant une alarme.

Le registre 9300 renvoie le nombre d'alarmes enregistrées dans l'historique des alarmes (FIFO). Le registre 9301 renvoie la valeur du pointeur pour la dernière alarme enregistrée dans l'historique des alarmes.

Exemple:

Si le registre 9300 = 10 et le registre 9301 = 3, la dernière alarme enregistrée correspond à l'enregistrement d'alarme 3.

Dans ce cas, l'avant-dernière alarme enregistrée correspond à l'enregistrement d'alarme 2.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2453	9300	L	_	_	INT16U	0-10	Р	Nombre d'alarmes enregistrées dans l'historique des alarmes (FIFO)
0x2454	9301	L	_	-	INT16U	0-9	Р	Valeur du pointeur pour la dernière alarme enregistrée dans l'historique des alarmes

Nombre d'enregistrements

Une requête de lecture de 15 x (n) registres est nécessaire pour lire n enregistrements d'alarme, où 15 est le nombre de registres pour chaque enregistrement de déclenchement.

Par exemple, une requête de lecture de 15 x 3 = 45 registres est nécessaire pour lire 3 enregistrements d'alarme de l'historique des alarmes :

- Les 15 premiers registres décrivent le premier enregistrement d'alarme.
- Les 15 registres qui suivent décrivent le deuxième enregistrement d'alarme.
- Les 15 derniers registres décrivent le troisième enregistrement d'alarme.

Adresse	Registre	Description
0x2455-0x2463	9302-9316	Enregistrement d'alarme 0
0x2464-0x2472	9317-9331	Enregistrement d'alarme 1
0x2473-0x2481	9332-9346	Enregistrement d'alarme 2
0x2482-0x2490	9347-9361	Enregistrement d'alarme 3
0x2491–0x249F	9362-9376	Enregistrement d'alarme 4
0x24A0-0x24AE	9377-9391	Enregistrement d'alarme 5
0x24AF-0x24BD	9392-9406	Enregistrement d'alarme 6
0x24BE-0x24CC	9407-9421	Enregistrement d'alarme 7
0x24CD-0x24DB	9422-9436	Enregistrement d'alarme 8
0x24DC-0x24EA	9437-9451	Enregistrement d'alarme 9

Enregistrement d'alarme

Une requête de lecture de 15 registres est nécessaire pour lire un enregistrement d'alarme.

L'ordre et la description des registres des enregistrements d'alarme sont les mêmes que ceux de l'enregistrement d'alarme 0 :

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x2455– 0x2458	9302-9305	L	-	-	XDATE	-	Р	Date de l'alarme
0x2459	9306	L	_	_	INT16U	_	Р	Code d'alarme
0x245A- 0x245B	9307-9308	L	-	-	MO- D10000	-	Р	Valeur du paramètre de protection ayant provoqué l'activation de l'alarme
0x245C	9309	L	_	-	INT16U	_	Р	Valeur du paramètre de temporisation ayant provoqué l'activation de l'alarme
0x245D	9310	L	-	-	INT16U	0-16000	Р	Courant d'alarme sur phase 1 (1)
0x245E	9311	L	-	-	INT16U	0-16000	Р	Courant d'alarme sur phase 2 (1)
0x245F	9312	L	-	-	INT16U	0-16000	Р	Courant d'alarme sur phase 3 (1)
0x2460	9313	L	-	_	INT16U	0-16000	Р	Courant d'alarme sur neutre (1)
0x2461- 0x2462	9314-9315	L	-	-	-	-	Р	Informations supplémentaires selon le type d'alarme
0x2463	9316	_	_	_	_	_	_	Réservé

Codes d'alarme

Code d'alarme	Description
1013 (0x03F5)	Alarme de protection Long retard
1014 (0x03F6)	Alarme de protection Terre
1015 (0x03F7)	Alarme de protection différentielle
1016 (0x03F8)	Déséquilibre de courant
1017 (0x03F9)	Demande maximum I1
1018 (0x03FA)	Demande maximum I2
1019 (0x03FB)	Demande maximum I3
1020 (0x03FC)	Demande maximum IN
1021 (0x03FD)	Sous-tension
1022 (0x03FE)	Surtension
1023 (0x03FF)	Déséquilibre de tension
1024 (0x0400)	Réservé
1025 (0x0401)	Puissance déwattée
1026 (0x0402)	Sous-fréquence
1027 (0x0403)	Surfréquence

Code d'alarme	Description
1028 (0x0404)	Rotation des phases
1029 (0x0405)	Délestage de charge en courant
1030 (0x0406)	Délestage de charge en puissance
1031–1099 (0x0407–0x044B)	Réservé
1100 (0x044C)	Système alimenté/réinitialisé
1101-1105 (0x044D-0x0451)	Réservé
1106 (0x0452)	Perte de la date et de l'heure
1107–1114 (0x0453–0x045A)	Réservé
1115 (0x045B)	Niveau de batterie faible

Historique des déclenchements

Description générale

Les registres d'historique des déclenchements décrivent les 10 derniers déclenchements produits. Le format de l'historique des déclenchements correspond à une série de 10 enregistrements stockés dans une pile de type FIFO (premier entré, premier sorti). Le dernier enregistrement efface le plus ancien. Chaque enregistrement se compose de 20 registres décrivant un déclenchement.

Le registre 9098 renvoie le nombre de défauts enregistrés dans l'historique des déclenchements (FIFO).

Le registre 9099 renvoie la valeur du pointeur pour le dernier défaut enregistré dans l'historique des déclenchements.

Exemple:

Si le registre 9098 = 10 et le registre 9099 = 5, le dernier défaut enregistré correspond à l'enregistrement de déclenchement 5.

Dans ce cas, l'avant-dernière alarme enregistrée correspond à l'enregistrement d'alarme 4.

NOTE:

- Les contacts doivent être inspectés chaque fois que le compteur dénombre une centaine de déclenchements.
- Le message Non disponible ou type de déclencheur non définis s'affiche si les caractéristiques du déclencheur n'ont pas été définies. Dans ce cas, consultez Breaker selection dans le menu Micrologic setup sur l'IHM MicroLogic, dans les registres 9846–9853, page 130.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x2385	9094	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur la phase 1 (1)
0x2386	9095	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur la phase 2 (1)
0x2387	9096	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur la phase 3 (1)
0x2388	9097	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur le neutre (1)
0x2389	9098	L	-	_	INT16U	0-10	Р	Nombre d'alarmes enregistrées dans l'historique des déclenchements (FIFO)

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description	
0x238A	9099	L	1	-	INT16U	0-9	Р	Valeur du pointeur pour la dernière alarme enregistrée dans l'historique des déclenchements	
(1) Réglage	(1) Réglage d'usine = 0x8000.								

Numéro de l'enregistrement du déclenchement

Une requête de lecture de 20 x (n) registres est nécessaire pour lire les n derniers enregistrements de déclenchements, où 20 est le nombre de registres pour chaque enregistrement de déclenchement.

Par exemple, une requête de lecture de 20 x 3 = 60 registres est nécessaire pour lire les 3 derniers enregistrements de déclenchements de l'historique des déclenchements :

- Les 20 premiers registres décrivent le premier enregistrement de déclenchement.
- Les 20 registres qui suivent décrivent le deuxième enregistrement de déclenchement.
- Les 20 registres qui suivent décrivent le troisième enregistrement de déclenchement.

Adresse	Registre	Description
0x238B-0x239E	9100-9119	Enregistrement de déclenchement 0
0x239F-0x23B2	9120-9139	Enregistrement de déclenchement 1
0x23B3-0x23C6	9140-9159	Enregistrement de déclenchement 2
0x23C7-0x23DA	9160-9179	Enregistrement de déclenchement 3
0x23DB-0x23EE	9180-9199	Enregistrement de déclenchement 4
0x23EF-0x2402	9200-9219	Enregistrement de déclenchement 5
0x2403-0x2416	9220-9239	Enregistrement de déclenchement 6
0x2417-0x242A	9240-9259	Enregistrement de déclenchement 7
0x242B-0x243E	9260-9279	Enregistrement de déclenchement 8
0x243F-0x2452	9280-9299	Enregistrement de déclenchement 9

Enregistrement de déclenchement

Une requête de lecture de 20 registres est nécessaire pour lire un enregistrement de déclenchement.

L'ordre et la description des registres des enregistrements de déclenchements sont les mêmes que pour l'enregistrement de déclenchement 0 :

Enregistrem	nent de déclench	ement 0						
Adresse	Registre	A/E/P	Description					
0x238B- 0x238E	9100-9103	L	-	-	XDATE	_	E/P	Date du déclenchement
0x238F	9104	L	_	-	INT16U	1000-1030	E/P	Code du déclenchement
0x2390- 0x2391	9105-9106	L	_	_	MO- D10000	-	Р	Valeur du paramètre de protection ayant provoqué l'activation d'une alarme
0x2392	9107	L	-	_	INT16U	_	Р	Valeur du paramètre de temporisation ayant provoqué le déclenchement

Enregistreme	nt de déclench	ement 0						
Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x2393	9108	L	-	-	INT16U	0-16000	Р	Courant de déclenchement sur phase 1 (1)
0x2394	9109	L	-	-	INT16U	0-16000	Р	Courant de déclenchement sur phase 2 (1)
0x2395	9110	L	-	-	INT16U	0-16000	Р	Courant de déclenchement sur phase 3 (1)
0x2396	9111	L	-	-	INT16U	0-16000	Р	Courant de déclenchement sur neutre (1)
0x2397	9112	L,	_	_	-	_	Р	Nouvelle valeur de l'indicateur d'usure des contacts à la suite d'un déclenchement (2)
0x2398- 0x2399	9113-9114	-	-	-	_	-	_	Réservé
0x239A- 0x239E	9115-9119	_	-	_	_	_	_	Réservé

⁽¹⁾ Exprimé sous la forme x 0,1 de In (courant nominal).

Codes de déclenchement

Code du déclenchement	Description
1000 (0x03E8)	Déclenchement suite à la protection Long retard Ir
1001 (0x03E9)	Déclenchement suite à la protection Court retard Isd
1002 (0x03EA)	Déclenchement suite à la protection Instantanée li
1003 (0x03EB)	Déclenchement suite à la protection Terre Ig
1004 (0x03EC)	Déclenchement suite à la protection différentielle IΔn
1005 (0x03ED)	Déclenchement suite à la protection instantanée intégrée l >>
1006-1007 (0x03EE-0x03EF)	Réservé
1008 (0x03F0)	Déclenchement suite à la protection avancée
1009 (0x03F1)	Déclenchement suite à la protection avancée étendue
1010–1015 (0x03F2–0x03F7)	Réservé
1016 (0x3F8)	Déséquilibre des courants
1017 (0x3F9)	Demande maximale I1
1018 (0x3FA)	Demande maximale I2
1019 (0x3FB)	Demande maximale I3
1020 (0x3FC)	Demande maximale IN
1021 (0x3FD)	Sous-tension
1022 (0x3FE)	Surtension
1023 (0x3FF)	Déséquilibre de tension
1024 (0x400)	Réservé
1025 (0x401)	Puissance déwattée
1026 (0x402)	Sous-fréquence
1027 (0x403)	Surfréquence
1028 (0x404)	Rotation des phases

⁽²⁾ Le déclencheur enregistre un indicateur par contact. Seule la valeur du contact le plus usé est indiquée ici. Consultez les registres 9094 à 9097.

Code du déclenchement	Description
1029 (0x405)	Délestage de charge en fonction du courant
1030 (0x406)	Délestage de charge en fonction de la puissance

Paramètres de protection de base

Paramètres de la protection du neutre

La protection du neutre est uniquement disponible lorsque le type de système est 30 ou 41 dans le registre 3314, page 152.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x2230	8753	L/E	1	_	INT16U	0-3	A/E/P	Type de protection du neutre : (1)
								0 = désactivé
								1 = N/2 (lr/2)
								2 = N (Ir)
								3 = Nx1,6 (1,6 lr) (2)

⁽¹⁾ Accès en écriture uniquement avec les déclencheurs MicroLogic P.

Paramètres de la protection Long retard

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x2231	8754	L	-	-	INT16U	0-1	A/E/P	-	Statut : 0x0001 = activé
0x2232	8755	L/E	_	-	INT16U	-	_	-	Type de courbe IDMTL (1)
							A/E/P	0	Courbe Long retard standard I ² t (réglage d'usine)
							Р	1	Courbe SIT
							Р	2	Courbe VIT
							Р	3	Courbe EIT (I2t actif)
							Р	4	Courbe HVF
							Р	5	Temps constant (I2t inactif)
							-	6-15	Réservé
0x2233- 0x2234	8756-8757	L/E	1	А	MO- D10000	40-8000	A/E/P	_	Valeur du seuil de déclenchement lr (1)
0x2235	8758	L/E	1	ms	INT16U	500- 24000	A/E/P	-	Temporisation tr (1)
0x2236- 0x223A	8759-8763	-	-	-	_	_	-	-	Réservé
(1) Accès en	écriture uniquer	nent avec	les dé	clencheurs	MicroLogic F).		•	1

Paramètres de la protection Court retard

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x223B	8764	L	_	_	INT16U	0-1	A/E/P	_	Statut : 0x0001 = activé
0x223C	8765	L/E	_	_	INT16U	0-1	A/E/P	_	Type de protection : (1)
									0 = I ² t activé
									1 = I ² t inactif
0x223D- 0x223E	8766-8767	L/E	1	Α	MO- D10000	60-80 000	A/E/P	_	Valeur du seuil de déclenchement lsd (1)

⁽²⁾ Valeur accessible uniquement pour les déclencheurs MicroLogic P.

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description			
223x0F	8768	L/E	1	ms	INT16U	0-400	A/E/P	_	Temporisation tsd (1)			
									0 s : valide uniquement pour la position l²t désactivé			
									100–400 ms = valide pour les positions l2t activé et l2t désactivé			
0x2240- 0x2244	8769-8773	-	-	-	_	_	-	_	Réservé			
(1) Accès en	(1) Accès en écriture uniquement avec les déclencheurs MicroLogic P.											

Paramètres de la protection Instantanée

Adresse	Registre	L/E	x	Unité	Туре	Plage	A/E/P	Bit	Description
0x2245	8774	L	-	-	INT16U	0x0001- 0x0101	A/E/P	-	0x0001 = protection active (réglage d'usine) 0x0101 = protection désactivée
0x2246	8775	-	-	_	_	-	_	_	Réservé
0x2247- 0x2248	8776-8777	L/E	1	А	MO- D10000	200- 120000	A/E/P	_	Seuil I de déclenchement de la protection Instantané (1)
0x2249- 0x224E	8778-8783	-	_	_	_	_	_	_	Réservé

Paramètres de la protection Terre

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
224x0F	8784	L/E	-	-	INT16U	0x0001- 0x0101	A/E/P	-	Etat de la protection : (1) (2) 0x0001 = protection active (réglage d'usine)
									0x0101 = protection désactivée
0x2250	8785	L/E	-	_	INT16U	0-1	A/E/P	_	Type de protection : (1)
									0 = I ² t activé
									1 = I ² t inactif
0x2251- 0x2252	8786-8787	L/E	1	Α	MO- D10000	30-1200	A/E/P	_	Seuil de déclenchement de la protection Terre Ig (1)
0x2253	8788	L/E	1	ms	INT16U	0-400	A/E/P	_	Temporisation de déclenchement tg pour la protection contre les défauts à la terre : (1) 0 s = valide uniquement pour la position l²t
									désactivé 100–400 ms = valide pour les positions l²t activé et l²t désactivé

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x2254- 0x2258	8789-8793	_	1	_	-	_	_	-	Réservé

⁽¹⁾ Accès en écriture uniquement avec les déclencheurs MicroLogic P.

(2) Pour écrire dans ce registre, les conditions suivantes doivent être remplies :

- MicroLogic 6 P version de firmware 8.244 ou supérieure (voir registre 8710)
- Activation de l'option Inhibition de la protection Terre à l'aide de l'utilitaire enable_GFI (disponible sur demande)

Paramètres de la protection différentielle (bloc Vigi)

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x2259	8794	L	_	_	INT16U	0x0001	A/P	_	0x0001 = protection active
0x225A	8795	_	_	_	_	_	_	_	Réservé
0x225B- 0x225C	8796-8797	L/E	1	mA	MO- D10000	5-300	A/P	_	Seuil de déclenchement de la protection différentielle IΔn (1)
0x225D	8798	L/E	1	ms	INT16U	0-1000	A/P	_	Temporisation de déclenchement l∆n pour la protection différentielle (1)
0x225E- 0x2262	8799-8803	-	-	_	_	-	_	_	Réservé
(1) Accès en	écriture unique	ment ave	c les d	éclenche	ırs Microl ogi	c.P			

⁽¹⁾ Accès en écriture uniquement avec les déclencheurs MicroLogic P.

Paramètres de protection avancée

Alarme de défaut à la terre

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x259C	9629	L/E	_	_	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme active 0x0101 = inactive (réglage d'usine)
0x259D	9630	_	_	-	-	-	-	_	Réservé
0x259E- 0x259F	9631-9632	L/E	1	A	MO- D10000	20-1200	P	-	Seuil de déclenchement de l'alarme (1) Valeur minimale = 0,05 x In Réglage d'usine = 1200 A
0x25A0	9633	L/E	10	s	INT16U	10-100	P	-	Temporisation d'activation de l'alarme Réglage d'usine = 100 (10 s)
0x25A1- 0x25A2	9634-9635	L/E	1	A	MO- D10000	20-1200	P	-	Seuil de désactivation de l'alarme (1) Valeur maximale = seuil de déclenchement de l'alarme Valeur minimale = 0,05 x In Réglage d'usine = 1200
0x25A3	9636	L/E	10	s	INT16U	10-100	Р	-	Temporisation de désactivation de l'alarme (1) Réglage d'usine = 10 (1 s)
0x25A4-	9637-9638	_	_	-	-	-	_	_	Réservé

Alarme de protection différentielle

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25A6	9639	L/E	_	_	INT16U	0x0001-	Р	_	Etat d'alarme : (1)
						0x0101			0x0001 = alarme active
									0x0101 = inactive (réglage d'usine)
0x25A7	9640	_	_	-	_	-	-	_	Réservé
0x25A8- 0x25A9	9641-9642	L/E	10	A	MO- D10000	5-300	Р	_	Seuil de déclenchement de l'alarme (1) Réglage d'usine = 300 (30 A)
0x25AA	9643	L/E	10	S	INT16U	10-100	Р	_	Temporisation d'activation de l'alarme Réglage d'usine = 100 (10 s)

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25AB- 0x25AC	9644-9645	L/E	10	A	MO- D10000	5-300	P	-	Seuil de désactivation de l'alarme (1) Valeur maximale = seuil de déclenchement de l'alarme Réglage d'usine = 300 (30 A)
0x25AD	9646	L/E	10	s	INT16U	10-100	Р	_	Temporisation de désactivation de l'alarme (1) Réglage d'usine = 10 (1 s)
0x25AE- 0x25AF	9647-9648	-	_	_	-	_	_	-	Réservé

Protection contre les déséquilibres des courants

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25B0	9649	L/E	-	_	INT16U	0x0001-	Р	-	0x0001 = alarme ou protection active
						0x0101			0x0101 = inactive (réglage d'usine)
0x25B1	9650	-	_	-	_	_	_	_	Réservé
0x25B2- 0x25B3	9651-9652	L/E	1	%	MO- D10000	5-60	Р	-	Valeur de déclenchement I unbal
									Réglage d'usine = 60 %
0x25B4	9653	L/E	10	s	INT16U	10-400	Р	-	Temporisation d'activation de la protection
									Réglage d'usine = 400 (40 s)
0x25B5- 0x25B6	9654-9655	L/E	1	%	MO- D10000	5-60	Р	-	Valeur de mise au repos de la protection
									Réglage d'usine = 60 %
0x25B7	9656	L/E	10	s	INT16U	100-3600	Р	-	Temporisation de désactivation de la protection
									Réglage d'usine = 100 (10 s)
0x25B8- 0x25B9	9657-9658	_	-	-	_	-	-	-	Réservé

Protection contre le courant maximum sur la phase 1

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25BA	9659	L/E	_	-	INT16U	0x0001- 0x0101	Р	_	0x0001 = alarme ou protection active 0x0101 = inactive (réglage d'usine)
0x25BB	9660	_	-	-	-	-	_	_	Réservé
0x25BC- 0x25BD	9661-9662	L/E	1	A	MO- D10000	20-80000	Р	_	seuil de déclenchement I1 max. limite maximale = 1 x valeur du registre de

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
									courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25BE	9663	L/E	1	s	INT16U	15-1500	Р	-	Temporisation d'activation de la protection
									Réglage usine = 1500 s
0x25BF- 0x25C0	9664-9665	L/E	1	А	MO- D10000	20-80000	Р	-	Valeur de mise au repos de la protection
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25C1	9666	L/E	1	S	INT16U	15-3000	Р	-	Temporisation de désactivation de la protection
									Réglage usine = 15 s
0x25C2- 0x25C3	9667-9668	-	-	-	-	_	-	-	Réservé

Protection contre le courant maximum sur la phase 2

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x25C4	9669	L/E	-	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x25C5	9670	-	-	-	_	-	_	_	Réservé
0x25C6- 0x25C7	9671-9672	L/E	1	A	MO- D10000	20-80000	Р	_	seuil de déclenchement l2 max.
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25C8	9673	L/E	1	S	INT16U	15-1500	Р	_	Temporisation d'activation de la protection
									Réglage usine = 1500 s
0x25C9- 0x25CA	9674-9675	L/E	1	А	MO- D10000	20-80000	Р	-	Valeur de mise au repos de la protection
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25CB	9676	L/E	1	S	INT16U	15-3000	P	-	Temporisation de désactivation de la protection Réglage usine = 15 s
0x25CC- 0x25CD	9677-9678	_	-	-	_	_	_	-	Réservé

Protection contre le courant maximum sur la phase 3

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25CE	9679	L/E	-	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x25CF	9680	_	_	_	-	-	_	_	Réservé
0x25D0- 0x25D1	9681-9682	L/E	1	Α	MO- D10000	20-80000	Р	-	seuil de déclenchement 13 max.
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25D2	9683	L/E	1	s	INT16U	15-1500	Р	_	Temporisation d'activation de la protection
									Réglage usine = 1500 s
0x25D3- 0x25D4	9684-9685	L/E	1	А	MO- D10000	20-80000	Р	_	Valeur de mise au repos de la protection
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25D5	9686	L/E	1	S	INT16U	15-3000	Р	-	Temporisation de désactivation de la protection
									Réglage usine = 15 s
0x25D6- 0x25D7	9687-9688	-	-	_	_	_	-	-	Réservé

Protection contre le courant maximum sur le neutre

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25D8	9689	L/E	_	-	INT16U	0x0001- 0x0101	Р	_	0x0001 = alarme ou protection active 0x0101 = inactive (réglage d'usine)
0x25D9	9690	_	_	-	_	_	_	_	Réservé
0x25DA- 0x25DB	9691-9692	L/E	1	Α	MO- D10000	20-80000	Р	_	seuil de déclenchement IN max.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25DC	9693	L/E	1	s	INT16U	15-1500	Р	-	Temporisation d'activation de la protection
									Réglage usine = 1500 s
0x25DD- 0x25DE	9694-9695	L/E	1	А	MO- D10000	20-80000	Р	-	Valeur de mise au repos de la protection
									limite maximale = 1 x valeur du registre de courant nominal (réglage d'usine), page 160
									limite minimale = 0,2 x valeur du registre de courant nominal, page 160
0x25DF	9696	L/E	1	s	INT16U	15-3000	Р	-	Temporisation de désactivation de la protection
									Réglage usine = 15 s
0x25E0- 0x25E1	9697-9698	-	-	-	_	-	-	-	Réservé

Protection contre la tension minimum

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25E2	9699	L/E	-	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x25E3	9700	-	_	-	-	-	-	-	Réservé
0x25E4- 0x25E5	9701-9702	L/E	1	V	MO- D10000	100-1200	Р	-	Valeur de déclenchement U min.
									Valeur maximale = seuil de déclenchement de la protection de tension maximum.
									Réglage d'usine = 100 V
0x25E6	9703	L/E	100	S	INT16U	20-500	Р	-	Temporisation d'activation de la protection
									Réglage d'usine = 500 (5 s)
0x25E7- 0x25E8	9704-9705	L/E	1	V	MO- D10000	100-1200	Р	_	Valeur de mise au repos de la protection
									Valeur minimale = seuil de déclenchement de la protection
									Réglage d'usine = 100 V

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x25E9	9706	L/E	100	s	INT16U	120-3600	P	-	Temporisation de désactivation de la protection Réglage d'usine = 120 (1,2 s)
0x25EA- 0x25EB	9707-9708	-	1	-	-	_	_	_	Réservé

Protection contre la tension maximum

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25EC	9709	L/E	_	-	INT16U	0x0001- 0x0101	Р	_	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x25ED	9710	-	_	_	_	_	-	-	Réservé
0x25EE- 0x25EF	9711-9712	L/E	1	V	MO- D10000	100-1200	Р	-	Valeur de déclenchement U max.
									Valeur minimale = seuil de déclenchement de la protection de tension minimum.
									Réglage d'usine = +5 % au-dessus de la tension primaire du transformateur de tension, page 155
0x25F0	9713	L/E	100	S	INT16U	20-500	Р	-	Temporisation d'activation de la protection
									Réglage d'usine = 500 (5 s)
0x25F1- 0x25F2	9714-9715	L/E	1	V	MO- D10000	100-1200	Р	_	Valeur de mise au repos de la protection
									Valeur maximale = seuil de déclenchement de la protection
									Réglage d'usine = +5 % de la tension primaire du transformateur de tension, page 155
0x25F3	9716	L/E	100	s	INT16U	120-3600	Р	-	Temporisation de désactivation de la protection
									Réglage d'usine = 120 (1,2 s)
0x25F4- 0x25F5	9717-9718	-	_	-	-	-	-	-	Réservé

Protection contre les déséquilibres des tensions

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x25F6	9719	L/E	_	_	INT16U	0x0001- 0x0101	Р	_	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x25F7	9720	_	_	_	_	_	_	_	Réservé
0x25F8- 0x25F9	9721-9722	L/E	1	%	MO- D10000	2-30	Р	-	Valeur de déclenchement U unbal
									Réglage d'usine = 30 %
0x25FA	9723	L/E	10	s	INT16U	10-400	P	-	Temporisation d'activation de la protection
									Réglage d'usine = 400 (40 s)
0x25FB- 0x25FC	9724-9725	L/E	1	%	MO- D10000	2-30	Р	_	Valeur de mise au repos de la protection
									Valeur maximale = seuil de déclenchement de la protection
									Réglage d'usine = 30 %
0x25FD	9726	L/E	10	s	INT16U	100-3600	Р	-	Temporisation de désactivation de la protection
									Réglage d'usine = 100 (10 s)
0x25FE- 0x25FF	9727-9728	_	_	-	_	_	-	-	Réservé

Protection contre la puissance de retour

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x260A	9739	L/E	_	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x260B	9740	L/E	_	-	INT16U	-	P	-	Direction de la circulation de la puissance active Bit 0 défini sur 0 = standard - raccordement des câbles d'alimentation aux borniers inférieurs du disjoncteur Bit 0 défini sur 1 = déwattée - raccordement
									des câbles d'alimentation aux borniers supérieurs du disjoncteur
									La direction peut être modifiée par le déclencheur ou en écrivant directement dans le registre après en

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
									avoir acquis le droit (à l'aide d'une commande)
									Réglage d'usine = 0x0000
0x260C- 0x260D	9741-9742	L/E	1	kW	MO- D10000	5-500	Р	-	Valeur de déclenchement rP max.
									Réglage d'usine = 500 kW
0x260E	9743	L/E	10	S	INT16U	2-200	Р	-	Temporisation d'activation de la protection
									Réglage d'usine = 200 (20 s)
0x260F- 0x2610	9744-9745	L/E	1	kW	MO- D10000	5-500	Р	-	Valeur de mise au repos de la protection
									Valeur maximale = seuil de déclenchement de la protection
									Réglage d'usine = 500 kW
0x2611	9746	L/E	10	s	INT16U	10-3600	Р	-	Temporisation de désactivation de la protection
									Réglage d'usine = 10 (1 s)
0x2612- 0x2613	9747-9748	-	_	_	_	_	_	-	Réservé

Protection contre la fréquence minimum

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x2614	9749	L/E	-	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x2615	9750	_	_	_	_	_	_	_	Réservé
0x2616- 0x2617	9751-9752	L/E	10	Hz	MO- D10000	450-5400	P	-	Valeur de déclenchement F min. Valeur maximale = seuil de déclenchement de la protection de fréquence maximale Réglage d'usine = 450 (45 Hz)
0x2618	9753	L/E	100	s	INT16U	20-500	P	-	Temporisation d'activation de la protection Réglage d'usine = 500 (5 s)
0x2619- 0x261A	9754-9755	L/E	10	Hz	MO- D10000	450-4400	Р	-	Valeur de mise au repos de la protection Valeur minimale = seuil de déclenchement de la protection Réglage d'usine = 450 (45 Hz)

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x261B	9756	L/E	100	s	INT16U	100-3600	P	-	Temporisation de désactivation de la protection Réglage d'usine = 100 (1 s)
0x261C- 0x261D	9757-9758	_	_	_	-	_	_	ı	Réservé

Protection contre la fréquence maximum

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x261E	9759	L/E	_	_	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme ou protection active
									0x0101 = inactive (réglage d'usine)
0x261F	9760	-	_	_	_	_	-	_	Réservé
0x2620- 0x2621	9761-9762	L/E	10	Hz	MO- D10000	450-5400	Р	-	Valeur de déclenchement F max.
									Valeur minimale = seuil de déclenchement de la protection de fréquence minimale
									Réglage d'usine = 650 (65 Hz)
0x2622	9763	L/E	100	s	INT16U	20-500	Р	-	Temporisation d'activation de la protection
									Réglage d'usine = 500 (5 s)
0x2623- 0x2624	9764-9765	L/E	10	Hz	MO- D10000	450-4400	Р	-	Valeur de mise au repos de la protection
									Valeur maximale = seuil de déclenchement de la protection
									Réglage d'usine = 650 (65 Hz)
0x2625	9766	L/E	100	s	INT16U	100-3600	Р	-	Temporisation de désactivation de la protection
									Réglage d'usine = 100 (1 s)
0x2626- 0x2627	9767-9768	-	_	_	_	_	_	_	Réservé

Alarme de rotation de phase

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x2628	9769	L/E	_	_	INT16U	0x0001- 0x0101	P	_	0x0001 = alarme active 0x0101 = inactive (réglage d'usine)
0x2629	9770	_	_	_	_	_	_	_	Réservé
0x262A- 0x262B	9771-9772	L/E	_	_	MOD10000	0-1	Р	_	0 = la rotation de phase est Ph1, Ph2, Ph3 (réglage d'usine)

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
									1 = la rotation de phase est Ph1, Ph3, Ph2
0x262C- 0x262F	9773-9776	-	-	_	-	-	_	_	Réservé
0x2630- 0x2631	9777-9778	_	_	_	_	_	_	_	Réservé

Délestage de charge et reconnexion en fonction du courant

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x2632	9779	L/E	_	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme active 0x0101 = inactive (réglage d'usine)
0x2633	9780	_	-	_	_	-	_	_	Réservé
0x2634- 0x2635	9781-9782	L/E	1	%	MO- D10000	50-100	Р	-	Seuil pour le délestage de charge et la reconnexion en fonction du courant, exprimé sous la forme d'un % du seuil de déclenchement de la protection Long retard Ir Réglage d'usine = 100
									%
0x2636	9783	L/E	1	%Tr	INT16U	20-80	P	_	Temporisation d'activation pour le délestage de charge et la reconnexion en fonction du courant, exprimé en % de la valeur de déclenchement de la protection Long retard tr (20 à 80 %) Réglage d'usine = 80 %
0x2637- 0x2638	9784-9785	L/E	1	%	MO- D10000	30-100	P	_	Valeur de désactivation pour le délestage de charge et la reconnexion en fonction du courant, exprimée en % du seuil de déclenchement de la protection Long retard Ir Réglage d'usine = 100 %
0x2639	9786	L/E	1	S	INT16U	10-600	Р		Temporisation de désactivation pour le délestage de charge et la reconnexion en fonction du courant Réglage usine = 10 s
0x263A- 0x263B	9787-9788	-	-	-	_	-	-	_	Réservé

Délestage de charge et reconnexion en fonction de la puissance

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x263C	9789	L/E	-	-	INT16U	0x0001- 0x0101	Р	-	0x0001 = alarme active 0x0101 = inactive (réglage d'usine)
0x263D	9790	L/E	_	-	INT16U	_	_	-	Direction de la circulation de la puissance active
									Bit défini sur 0 = standard - raccordement des câbles d'alimentation aux borniers inférieurs du disjoncteur
									Bit défini sur 1 = déwattée - raccordement des câbles d'alimentation aux borniers supérieurs du disjoncteur
									La direction peut être modifiée via l'interface de commande ou en écrivant directement dans le registre après en avoir acquis le droit (à l'aide d'une commande)
									Réglage d'usine = 0x0000
0x263E- 0x263F	9791-9792	L/E	1	kW	MO- D10000	200-10000	Р	_	Seuil pour le délestage de charge et la reconnexion en fonction de la puissance
									Réglage d'usine = 10000 kW
0x2640	9793	L/E	1	s	INT16U	10-3600	Р	_	Temporisation d'activation pour le délestage de charge et la reconnexion en fonction de la puissance
									Réglage usine = 3600 s
0x2641- 0x2642	9794-9795	L/E	1	kW	MO- D10000	100-10000	Р	_	Seuil de désactivation pour le délestage de charge et la reconnexion en fonction de la puissance
									Réglage d'usine = 10000 kW
0x2643	9796	L/E	1	s	INT16U	10-3600	P	-	Temporisation de désactivation pour le délestage de charge et la reconnexion en fonction de la puissance Réglage usine = 10 s
0x2644-	9797-9798	_	_	_	_	_	_	_	Réservé
0x2645	3131-3130								1 COOL VC

Paramètres de mesure

Type de système

La commande de configuration de présence d'ENVT (External Neutral Voltage Tap) (code de commande = 46472) configure le contenu du registre de type de système.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0CF1	3314	R-WC	_	-	INT16U	30, 31, 40, 41	E/P	Type de système
						41		Réglage d'usine : • 40 avec le déclencheur MicroLogicE • 41 avec les déclencheurs MicroLogic P

Détermination du type de système

Si	Alors	Résultat
le type de système est un disjoncteur tripolaire avec un transformateur de courant neutre externe et sans prise de tension externe neutre (ou ENVT)	type de système = 30	 Les mesures des tensions phase à phase sont disponibles. Les mesures des tensions phase-neutre ne sont pas disponibles. La mesure du courant neutre est disponible. La méthode avec 3 wattmètres n'est pas possible.
le type de système est un disjoncteur tripolaire sans transformateur de courant neutre externe et sans ENVT	type de système = 31	 Les mesures des tensions phase à phase sont disponibles. Les mesures des tensions phase-neutre ne sont pas disponibles. La mesure du courant neutre n'est pas disponible. La méthode avec 3 wattmètres n'est pas possible.
le type de système est un disjoncteur tripolaire sans transformateur de courant neutre externe et avec prise de tension externe neutre (ou ENVT)	type de système = 40	 Les mesures des tensions phase à phase sont disponibles. Les mesures des tensions phase-neutre sont disponibles. La mesure du courant neutre n'est pas disponible. La méthode avec 3 wattmètres est possible.
le type de système est un disjoncteur tripolaire avec un transformateur de courant neutre externe et un ENVT, ou si le type de système est un disjoncteur quadripolaire	type de système = 41	 Les mesures des tensions phase à phase sont disponibles. Les mesures des tensions phase-neutre sont disponibles. La mesure du courant neutre est disponible. La méthode avec 3 wattmètres est possible.

Ce tableau présente le texte à choisir sur l'afficheur du déclencheur MicroLogicE selon le type de système déterminé précédemment :

Si	Alors
type de système = 31	sélectionner 3W3ct
type de système = 40	sélectionner 4W3ct
type de système = 41	sélectionner 4W4ct

Signe de la puissance

Sur les déclencheurs MicroLogic P, le signe de la puissance est configuré à l'aide de l'IHM MicroLogic ou de la commande de configuration du signe de la puissance (code de commande = 47240).

Sur les déclencheurs MicroLogic E, le signe de la puissance est configuré en utilisant l'IHM MicroLogic uniquement.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0CF3	3316	R-WC	_	-	INT16U	0-1	E/P	Signe de la puissance :
								0 = la puissance active circule de l'amont (haut) vers l'aval (bas) (réglage d'usine). 1 = la puissance active circule de l'aval (bas) vers l'amont (haut).

Signe de la puissance réactive

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description				
0x0CF4	3317	L/E	-	_	INT16U	0-1	E/P	Convention de signe s'appliquant à la puissance réactive : 0 = autre convention IEEE				
								1 = convention EEE et CEI (réglage d'usine) (1)				
(1) Avec le déc	(1) Avec le déclencheur MicroLogic E, convention CEI uniquement.											

Signe du facteur de puissance

La commande de configuration du signe du facteur de puissance (code de commande = 47241) configure le contenu du registre du signe du facteur de puissance.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0CF5	3318	R-WC	-	-	INT16U	0-2	E/P	Convention de signe s'appliquant au facteur de puissance et au facteur de puissance fondamentale (cos¢): 0 = convention CEI 1 = autre convention IEEE 2 = convention IEEE (réglage d'usine) (1)

Mode d'accumulation d'énergie

La commande de configuration du mode d'accumulation d'énergie (code de commande = 47242) configure le contenu du registre du mode d'accumulation d'énergie.

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0CFB	3324	R-WC	-	_	INT16U	0-1	E/P	Mode d'accumulation d'énergie:
								0 = accumulation absolue (réglage d'usine) (1)
								Ep = EpIn + EpOut
								Eq = EqIn + EqOut
								1 = accumulation signée
								Ep = EpIn - EpOut
								Eq = EqIn - EqOut
(1) Avec le dé	clencheur Micro	ol ogic F	seuls de	es calculs :	absolus sont	disponibles	•	

Temps de demande

La commande de configuration de la demande de courant (code de commande 47243) configure le contenu des registres 3351 et 3352.

La commande de configuration de la demande de puissance (code de commande 47244) configure le contenu des registres 3354 et 3355.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0D16	3351	L/E	_	_	INT16U	0-1	E/P	Méthode de calcul de la demande de courant (type de fenêtre) :
								0 = fenêtre de temps, glissante
								1 = thermique, glissante (réglage d'usine) (1)
0x0D17	3352	R-WC	x1	min	INT16U	5-60	E/P	Durée de la fenêtre de calcul de la demande de courant, réglable par incréments de 1 minute.
								Le réglage d'usine est 15 minutes ⁽²⁾ .
0x0D19	3354	R-WC	_	_	INT16U	0-5	E/P	Méthode de calcul de la demande de puissance (type de fenêtre) :
								0 = glissante (fenêtre de temps) (réglage d'usine)
								1 = glissante (thermique) (1)
								2 = bloc (fenêtre de temps)
								5 = synchronisé sur la communication
0x0D1A	3355	R-WC	x1	min	INT16U	5-60	E/P	Durée de la fenêtre de calcul de la demande de puissance, réglable par incréments de 1 minute.
								Le réglage d'usine est 15 minutes.

⁽¹⁾ Avec le déclencheur MicroLogic E, seule l'option de fenêtre glissante thermique est disponible.

⁽²⁾ La durée en minutes de la fenêtre de calcul de la demande en courant définie dans le registre est utilisée pour le courant maximum I1, I2, et pour les fonctions de protection I3 et IN. Lorsque ces fonctions sont activées, il est possible de modifier la durée de la fenêtre de calcul que le capot de protection du cadran soit fermé ou non, que l'accès à distance soit autorisé (MicroLogic) ou non, et que le superviseur connaisse le mot de passe pour le contrôle d'accès à distance ou non.

Tension nominale

La commande de configuration de l'affichage Vn de la tension primaire nominale (code de commande = 47245) configure le contenu du registre de la tension nominale

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x258F	9616	R-WC	1	V	INT16U	100-1150	E/P	Tension primaire nominale Vn sur le transformateur de tension. Réglage d'usine = 690 V
0x2590	9617	L/E	1	V	INT16U	100-690	P	Tension secondaire nominale sur le transformateur de tension. Réglage d'usine = 690 V

Informations horodatées

Description générale

Les informations horodatées permettent à l'utilisateur de connaître toutes les dates liées à des données importantes.

Le tableau des informations horodatées décrit :

- la date actuelle
- · la dernière demande de courant et les dates correspondantes
- la dernière demande de puissance et les dates correspondantes
- · le dernier réarmement et les dates correspondantes
- la dernière valeur de crête de demande de facteur K et les dates correspondantes
- la dernière valeur de crête de demande de courant et les dates correspondantes

Date actuelle

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0BB7- 0x0BBA	3000-3003	L	-	_	XDATE	_	Р	Date actuelle du gestionnaire de mesure
0x2327- 0x232A	9000-9003	L	-	1	XDATE	ı	E/P	Date actuelle du gestionnaire de protection

Dernière demande de courant

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0BBC- 0x0BBE	3005-3007	L	-	-	DATE	_	E/P	Date de la dernière demande de courant maximum sur la phase l1 (registre 2204)
0x0BBF- 0x0BC1	3008-3010	L	-	-	DATE	_	E/P	Date de la dernière demande de courant maximum sur la phase l2 (registre 2205)
0x0BC2- 0x0BC4	3011-3013	L	-	_	DATE	_	E/P	Date de la dernière demande de courant maximum sur la phase l3 (registre 2206)
0x0BC5- 0x0BC7	3014-3016	L	_	_	DATE	_	E/P	Date de la dernière demande de courant maximum sur le neutre (registre 2207) (1)

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 31 ou 40. Consultez la section Type de système, page 152.

Dernière demande de puissance

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0BC8- 0x0BCA	3017–3019	L	_	-	DATE	_	E/P	Date de la dernière demande de puissance active maximale (registre 2224)
0x0BCB- 0x0BCD	3020-3022	L	_	-	DATE	_	Р	Date de la dernière demande de puissance réactive maximale (registre 2230)
0x0BCE- 0x0BD0	3023–3025	L	_	-	DATE	_	E/P	Date de la dernière demande de puissance apparente maximale (registre 2236)

Dernier réarmement

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0BD1- 0x0BD3	3026-3028	L	-	-	DATE	-	Р	Date de la dernière réinitialisation des valeurs de demande de courant maximum
0x0BD4- 0x0BD6	3029–3031	L	_	-	DATE	-	Р	Date de la dernière réinitialisation des valeurs de demande de puissance maximale
0x0BD7- 0x0BD9	3032-3034	L	-	_	DATE	-	Р	Date et heure de la dernière réinitialisation des registres de minimum (1300-1599) (1)
0x0BDA- 0x0BDC	3035–3037	L	-	-	DATE	_	Р	Date et heure de la dernière réinitialisation des registres de maximum (1600-1899) (1)
0x0BDD- 0x0BDF	3038-3040	L	-	-	DATE	_	Р	Date de la dernière réinitialisation des compteurs d'énergie
0x2331- 0x2333	9010–9012	L	_	-	DATE	_	Р	Date de la dernière réinitialisation du courant de phase maximal, du courant de défaut de mise à la terre et du courant de perte à la terre
0x236D- 0x236F	9070-9072	L	-	-	DATE	-	Р	Date de la dernière réinitialisation de l'historique des déclenchements (10 derniers défauts)
0x2370- 0x2372	9073–9075	L	-	-	DATE	_	Р	Date de la dernière réinitialisation de l'historique des alarmes (10 dernières alarmes)

⁽¹⁾ Ce registre est mis à jour chaque fois que les registres de valeurs minimales sont réinitialisés. L'interface de commande permet à l'utilisateur d'effacer les valeurs minimales des déséquilibres de courant efficace, de tension efficace, de fréquence, les valeurs P/Q/S/PF, les quantités fondamentales et de distorsion harmonique totale (THD), ainsi que les valeurs crêtes de tension et de courant de façon indépendante. Cependant, du fait que seules la date et l'heure du dernier réarmement sont conservées, il est recommandé de toujours définir tous les bits de la commande qui réinitialise les valeurs minimales.

Dernière valeur de crête de demande de facteur K

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0BE0- 0x0BE2	3041-3043	L	_	-	DATE	-	Р	Date d'apparition de la dernière valeur de crête de demande de facteur K (phase 1)
0x0BE3- 0x0BE5	3044-3046	L	_	-	DATE	-	Р	Date d'apparition de la dernière valeur de crête de demande de facteur K (phase 2)
0x0BE6- 0x0BE8	3047-3049	L	_	-	DATE	-	Р	Date d'apparition de la dernière valeur de crête de demande de facteur K (phase 3)
0x0BE9- 0x0BEB	3050-3052	L	_	-	DATE	_	Р	Date d'apparition de la dernière valeur de crête de demande de facteur K (neutre) (1)

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 31 ou 40. Consultez la section Type de système, page 152.

Dernière valeur de crête de demande de courant

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x0BEC- 0x0BEE	3053–3055	L	-	-	DATE	-	Р	Date d'apparition de la dernière valeur de crête de demande l² (phase 1)
0x0BEF- 0x0BF1	3056–3058	L	-	-	DATE	_	Р	Date d'apparition de la dernière valeur de crête de demande l² (phase 2)
0x0BF2- 0x0BF4	3059–3061	L	_	-	DATE	-	Р	Date d'apparition de la dernière valeur de crête de demande l² (phase 3)

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0BF5- 0x0BF7	3062-3064	L	-	-	DATE	-	Р	Date d'apparition de la dernière valeur de crête de demande l² (neutre) (1)

⁽¹⁾ La valeur n'est pas disponible lorsque le type de système dans le registre 3314 est 31 ou 40. Consultez la section Type de système, page 152.

Indicateurs de maintenance

Compteur de taux d'usure

Les contacts doivent être inspectés chaque fois que le compteur dénombre une centaine de déclenchements. Le message **Non disponible ou type de déclencheur non défini** s'affiche si les caractéristiques du déclencheur n'ont pas été définies. Dans ce cas, consultez **Breaker selection** dans le menu **Micrologic setup** sur l'IHM MicroLogic, dans les registres 9846–9853, page 130.

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description	
0x2385	9094	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur la phase 1 (1)	
0x2386	9095	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur la phase 2 (1)	
0x2387	9096	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur la phase 3 (1)	
0x2388	9097	L	1	%	INT16U	0-32767	Р	Indicateur d'usure des contacts sur le neutre (1)	
(1) Réglage d'usine = 0x8000.									

Compteurs des profils de charge

Les compteurs des profils de charge (uniquement disponibles avec le module BCM ULP) indiquent le nombre d'heures pour chaque plage de courant dans le déclencheur MicroLogic. Si les compteurs des profils de charge atteignent la valeur maximum de 4 294 967 295 et si un nouvel événement de profil de charge se produit, les compteurs sont remis à 0.

Une requête de lecture de 8 registres est nécessaire pour lire les compteurs des profils de charge.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x74B7- 0x74B8	29880-29881	L	1	Heure	INT32U	0-4 294 967 295	A/E/P	Nombre d'heures pour la plage 0– 49 % du courant nominal
0x74B9- 0x74BA	29882-29883	L	1	Heure	INT32U	0-4 294 967 295	A/E/P	Nombre d'heures pour la plage 50- 79 % du courant nominal
0x74BB- 0x74BC	29884-29885	L	1	Heure	INT32U	0-4 294 967 295	A/E/P	Nombre d'heures pour la plage 80- 89 % du courant nominal
0x74BD- 0x74BE	29886-29887	L	1	Heure	INT32U	0-4 294 967 295	A/E/P	Nombre d'heures pour la plage 90- 100 % du courant nominal

Divers

Courant nominal

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
222x0D	8750	L	1	Α	INT16U	0-8000	A/E/P	Courant nominal du disjoncteur
								Réglage d'usine = 100 A (broche du capteur absente au niveau du disjoncteur)

Mesures du gestionnaire de protection

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x2263	8804	L	_	_	INT16U	0-65535	Р	Compteur des modifications de configuration du gestionnaire de protection
								Ce compteur est incrémenté chaque fois qu'un paramètre du gestionnaire de protection est appliqué via l'IHM (clavier ou commutateurs) ou via le port COM.
								Si les commutateurs sont modifiés pendant la mise hors tension, ce compteur est incrémenté lors de la mise sous tension.
0x2280	8833	L	10	%In	INT16U	0-16000	P	Courant de défaut maximum (déclenchement) enregistré sur la phase 1 depuis la dernière réinitialisation (4)
								Réglage d'usine = 0x8000 (aucun défaut enregistré ou type de disjoncteur non saisi)
0x2281	8834	L	10	%In	INT16U	0-16000	P	Courant de défaut maximum (déclenchement) enregistré sur la phase 2 depuis la dernière réinitialisation (4)
								Réglage d'usine = 0x8000 (aucun défaut enregistré ou type de disjoncteur non saisi)
0x2282	8835	L	10	%In	INT16U	0-16000	P	Courant de défaut maximum (déclenchement) enregistré sur la phase 3 depuis la dernière réinitialisation (4)
								Réglage d'usine = 0x8000 (aucun défaut enregistré ou type de disjoncteur non saisi)
0x2283	8836	L	10	%In	INT16U	0-16000	P	Courant de défaut maximum (déclenchement) enregistré sur le neutre depuis la dernière réinitialisation (4)
								Réglage d'usine = 0x8000 (aucun défaut enregistré ou code de disjoncteur non fourni)
0x2284	8837	L	1	% Ir	INT16U	0-32767	A/P	Courant efficace sur la phase 1, exprimé en % du seuil de déclenchement de la protection Long retard Ir
0x2285	8838	L	1	% Ir	INT16U	0-32767	A/P	Courant efficace sur la phase 2, exprimé en % du seuil de

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
								déclenchement de la protection Long retard Ir
0x2286	8839	L	1	% Ir	INT16U	0-32767	A/P	Courant efficace sur la phase 3, exprimé en % du seuil de déclenchement de la protection Long retard Ir
0x2287	8840	L	1	% Ir	INT16U	0-32767	A/P	Courant efficace sur le neutre, exprimé en % du courant nominal In x coefficient de neutre sélectionné (x 1, x 2 ou x 0,5) (1)
0x2288	8841	L	1	%lg	INT16U	0-32767	A/P	Courant de défaut à la terre « résiduel », exprimé en % du seuil de déclenchement Ig de la protection contre les défauts à la terre ⁽²⁾
0x2289	8842	L	100	%ldn	INT16U	0-32767	A/P	Courant de fuite à la terre, exprimé en % du seuil de déclenchement IΔN de la protection différentielle ⁽³⁾

⁽¹⁾ Valeur non accessible lorsque la configuration du registre 9618 opère la sélection « aucun TC externe ».

État de la batterie

Le tableau suivant représente l'état de charge de la batterie :

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x228A	8843	L	1	%	INT16U	0-100	A/E/P	Témoin de charge de la batterie :
								100 % = U > 2800 mV
								50 % = 2200 < U < 2800 mV
								0 % = U < 2200 mV

Temps restant jusqu'au déclenchement de la protection Long retard

Le temps restant jusqu'au déclenchement de la protection Long retard est évalué toutes les secondes. Si une autre protection est déclenchée, alors le temps restant jusqu'au déclenchement continue d'être évalué.

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x22A0- 0x22A1	8865-8866	L	10	S	MO- D10000	_	Р	Temps restant jusqu'au déclenchement de la protection Long retard

⁽²⁾ Accessible uniquement avec le déclencheur MicroLogic 6.0.

⁽³⁾ Accessible uniquement avec le déclencheur MicroLogic 7.0.

⁽⁴⁾ Une alimentation auxiliaire est requise pour calculer les courants de défaut. Le calcul est efficace uniquement lorsque le code de sélection du disjoncteur a été fourni (voir les *guides utilisateur des déclencheurs MicroLogic P*).

Rotation des phases

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x22A7	8872	L	_	_	INT16U	_	Р	Rotation de phase :
								0 = ABC (123)
								1 = ACB (132)

Langue

Ce registre définit la langue utilisée par le déclencheur. Il peut être modifié à l'aide du clavier du déclencheur. La langue par défaut est Anglais mais une autre langue peut être réglée en usine.

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
0x258D	9614	L/E	_	_	INT16U	_	Р	0	Français
								1	Anglais (E-U)
								2	Anglais (R-U)
								3	Allemand
								4	Espagnol
								5	Italien
								7	Chinois
								8	Russe
								9	Des langues sont disponibles en option sur commande auprès de Schneider Electric
								10-15	Réservé

Fréquence nominale

Ce registre évalue la fréquence de fonctionnement du disjoncteur requise par le gestionnaire de protection afin de désactiver la protection contre la rotation des phases pour les réseaux de distribution électrique 400 Hz.

Adresse	Registre	L/E	x	Unité	Туре	Plage	A/E/P	Bit	Description
0x258E	9615	L/E	-	-	INT16U	-	Р	0	50/60 Hz (réglage d'usine)
								1-2	Réservé
								3	400 Hz
								4-15	Réservé

Fichiers des déclencheurs MicroLogic

Contenu de ce chapitre

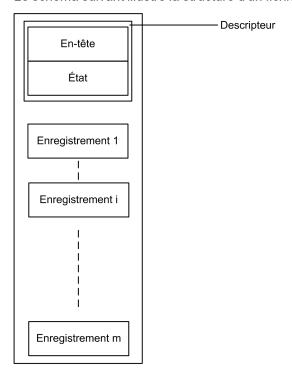
Mécanisme de gestion des fichiers	. 164
Historique des événements de protection	. 166
Historique des événements de protection de la maintenance	. 168

Mécanisme de gestion des fichiers

Présentation

Le déclencheur MicroLogic stocke les événements dans différents fichiers.

Accès


Ces fichiers peuvent être lus avec le code fonction Modbus 20 (0x14) : Lecture de l'enregistrement de fichier.

Les fichiers sont de deux types :

- Les fichiers comportant un nombre dynamique d'enregistrements ajoutés dans une pile de type FIFO et gérés grâce aux registres de séquence. Dans ce cas, le numéro d'enregistrement du dernier enregistrement est défini à l'aide de ces registres de séquence.
- Les fichiers comportant un nombre n fixe d'enregistrements. Dans ce cas, tous les numéros d'enregistrements et leurs descriptions sont détaillés. La fonction Modbus 20 (0x14) est traitée n fois sur les n numéros d'enregistrements souhaités.

Structure

Le schéma suivant illustre la structure d'un fichier :

Un fichier est composé d'enregistrements et il comporte 100 enregistrements au maximum. Tous les enregistrements contenus dans un fichier présentent une structure et une taille identiques.

Le descripteur est composé des deux zones de lecture suivantes :

- une zone de lecture pour la configuration du fichier (en-tête) qui indique la taille du fichier et des enregistrements
- une zone de lecture pour les caractéristiques du fichier (état) qui indique le nombre d'enregistrements.

Les descripteurs sont mis à jour chaque fois qu'un nouvel enregistrement est ajouté au fichier.

Description des registres de séquence

Les caractéristiques du fichier (état) sont transmises à deux registres de séquence du superviseur qui indiquent le premier et le dernier enregistrement ajoutés au fichier. Elles permettent au superviseur de déterminer si certains enregistrements ont été supprimés avant d'avoir été lus.

Le numéro de séquence du dernier enregistrement est incrémenté de 1 à 8000 chaque fois qu'un nouvel enregistrement est ajouté au fichier.

Lorsque le fichier est plein (100 enregistrements au maximum), le nouvel enregistrement remplace le plus ancien. Le numéro de séquence du dernier enregistrement continue à être incrémenté normalement. Lorsque l'enregistrement le plus ancien est remplacé, le numéro de séquence du premier enregistrement est également incrémenté.

Lorsque le numéro de séquence atteint la valeur 8000, le numéro de séquence suivant est 1.

Exemple de lecture d'enregistrement de fichier

La fonction Lecture d'enregistrement de fichier est utilisée pour accéder aux informations d'un fichier de façon standard. Cet exemple illustre une requête de lecture de l'enregistrement le plus récent dans le journal des événements du gestionnaire de protection.

Le tableau suivant indique comment lire le journal des événements du fichier numéro 20 (0x0014). Ce fichier comprend 100 enregistrements. Chaque enregistrement est composé de 9 registres. La longueur de l'enregistrement est donc égale à 9 (0x0009). L'adresse Modbus de l'esclave Modbus est 47 = 0x2F.

Requête du maître		Réponse de l'esclave		
Nom du champ	Exemple	Nom du champ	Exemple	
Adresse de l'esclave Modbus	0x2F	Adresse de l'esclave Modbus	0x2F	
Code de fonction	0x14	Code de fonction	0x14	
Longueur des données en octets	0x07	Longueur des données en octets	0x14	
Type de référence	0x06	Longueur de la réponse du fichier	0x13	
Numéro de fichier	0x0014	Type de référence	0x06	
Nombre d'enregistrements	0x1234	Données de l'enregistrement	9x2 octets de données	
Longueur de l'enregistrement	0x0009	CRC (MSB)	0xXX	
CRC (MSB)	0xXX	CRC (LSB)	0xXX	
CRC (LSB)	0xXX	-	•	

Le numéro de séquence du dernier enregistrement du fichier (le plus récent) correspond au contenu du registre 9921. Considérons que le contenu du registre 9921 est 0x1234.

Historique des événements de protection

Description générale

Le système stocke les événements concernant le gestionnaire de protection (déclenchements, alarmes) dans le fichier numéro 20.

Ce fichier comporte 100 enregistrements et chaque enregistrement est constitué de 9 registres.

En-tête du fichier

Le tableau suivant décrit le contenu de l'en-tête du fichier :

Adresse	Registre	L/E	х	Uni- té	Туре	Plage	A/E/P	Description
0x26AB	9900	L/E	_	_	INT16U	_	Р	Etat du fichier :
								0x0000 = Fichier désactivé
								0xFFFF = Fichier activé (réglage d'usine)
0x26AC	9901	L	_	-	INT16U	_	Р	Type de fichier :
								20 = Historique des événements de protection
0x26AD	9902	L	1	_	INT16U	_	Р	Taille d'un fichier = 100 enregistrements
0x26AE	9903	L	1	-	INT16U	_	Р	Taille d'un enregistrement = 9 registres
0x26AF	9904	L	-	-	INT16U	1	Р	Mode de remplissage du fichier :
								0 = Circulaire

Etat du fichier

Le tableau suivant décrit le contenu de l'état du fichier :

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x26BB	9916	L	1	-	INT16U	_	Р	Taille d'un fichier = 100 enregistrements
0x26BC	9917	L	1	_	INT16U	_	Р	Taille d'un enregistrement = 9 registres
0x26BD	9918	L	1	_	INT16U	_	Р	0x0000 = Fichier OK
								0x000A = Taille de l'enregistrement inférieure à la taille prévue
								0x0014 = Taille de l'enregistrement supérieure à la taille prévue
								0x001E = Mémoire insuffisante
								0x00FA = Erreur interne
								0x00FD = Table d'allocation endommagée
								0x00FE = Configuration zéro
								0x00FF = Configuration non valide
								0xFC00 = Nombre de fichiers non valide
								0xFD00 = Nombre d'enregistrements non valide
								0xFE00 = Fichier non pris en charge
								0xFF00 = Allocation du fichier impossible
0x26BE	9919	L	1	_	INT16U	0-100	Р	Nombre d'enregistrements dans le fichier

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x26BF	9920	L	1	_	INT16U	0-8000	Р	Numéro de séquence du premier enregistrement dans le fichier (le plus ancien)
0x26C0	9921	L	1	_	INT16U	0-8000	Р	Numéro de séquence du dernier enregistrement dans le fichier (le plus récent)
0x26C1- 0x26C3	9922– 9924	L	_	_	DATE	-	Р	Date de la dernière réinitialisation du fichier. Réglage d'usine = 0x8000 0x8000 0x8000

Enregistrement des événements de protection

Le tableau suivant décrit le format d'un enregistrement dans l'historique des événements de protection :

Registres	Туре	Bits	Description
1-4	XDATE	-	Date de l'événement
5	INT16U	_	Numéro de l'événement : code d'alarme, page 133 ou code de déclenchement, page 136
6	INT16U	_	Caractéristiques des événements pour le journal des événements de protection (1)
7	INT16U	0-7	1 = Evénement de type supérieur
			2 = Alarme pour événement de type inférieur
			3 = Alarme de type minimum
			4 = Alarme de type maximum
			5 = Alarme de type équivalent
		8-11	1 = Début d'un événement
			2 = Fin d'une alarme
		12-15	Les alarmes 1100 à 1106 ont la priorité 3. Pour les autres alarmes, la valeur contenue dans ces 4 bits représente la priorité associée à l'événement (le cas échéant et selon la configuration d'alarme).
8	INT16U	_	Registre de journalisation associé à l'alarme (2)
9	INT16U	_	Registre d'action associé à l'alarme (2)

⁽¹⁾ Pour les numéros d'événement 1000-1004, la donnée correspond à la valeur du courant de défaut interrompu par le disjoncteur.

Pour tous les autres événements de protection, cette valeur est forcée à 32768.

(2) Les registres 8 et 9 sont des copies des registres de configuration des alarmes à l'instant où l'événement s'est produit. Ces registres dépendent entièrement des configurations de l'utilisateur. Pour les événements 1100–1106, ces registres sont forcés à la valeur 32768.

Historique des événements de protection de la maintenance

Description générale

Le système stocke les événements concernant le gestionnaire de protection de la maintenance (mise sous tension, courant de défaut de crête maximal, etc.) dans le fichier numéro 21.

Ce fichier comporte 20 enregistrements et chaque enregistrement est constitué de 6 registres.

Cet historique des événements de maintenance a été mis en œuvre sur les déclencheurs MicroLogicP avec le firmware Plogic2002AA et version ultérieure.

En-tête du fichier

Le tableau suivant décrit le contenu de l'en-tête du fichier :

Adresse	Registre	L/E	X	Uni- té	Туре	Plage	A/E/P	Description
0x26CB	9932	L/E	_	_	INT16U	_	Р	Etat du fichier :
								0x0000 = Fichier désactivé
								0xFFFF = Fichier activé (réglage d'usine)
0x26CC	9933	L	_	_	INT16U	_	Р	Type de fichier :
								21 = Historique des événements de protection de la maintenance
0x26CD	9934	L	1	_	INT16U	_	Р	Taille d'un fichier = 20 enregistrements
0x26CE	9935	L	1	_	INT16U	_	Р	Taille d'un enregistrement = 6 registres
0x26CF	9936	L	_	_	INT16U	1	Р	Mode de remplissage du fichier :
								1 = Désactivé si l'historique est plein

État du fichier

Le tableau suivant décrit le contenu de l'état du fichier :

Adresse	Registre	L/E	X	Uni- té	Туре	Plage	A/E/P	Description
0x26DB	9948	L	1	_	INT16U	_	Р	Taille d'un fichier = 20 enregistrements
0x26DC	9949	L	1	_	INT16U	_	Р	Taille d'un enregistrement = 6 registres
0x26DD	9950	L	1	_	INT16U	_	Р	0x0000 = Fichier OK
								0x000A = Taille de l'enregistrement inférieure à la taille prévue
								0x0014 = Taille de l'enregistrement supérieure à la taille prévue
								0x001E = Mémoire insuffisante
								0x00FA = Erreur interne
								0x00FD = Table d'allocation endommagée
								0x00FE = Configuration zéro
								0x00FF = Configuration non valide
								0xFC00 = Nombre de fichiers non valide

Adresse	Registre	L/E	x	Uni- té	Туре	Plage	A/E/P	Description
								0xFD00 = Nombre d'enregistrements non valide 0xFE00 = Fichier non pris en charge 0xFF00 = Allocation du fichier impossible
0x26DE	9951	L	1	_	INT16U	20	Р	Nombre d'enregistrements dans le fichier = 20
0x26DF	9952	L	1	_	INT16U	1	Р	Numéro de séquence du premier enregistrement dans le fichier (le plus ancien) = 1
0x26E0	9953	L	1	_	INT16U	20	Р	Numéro de séquence du dernier enregistrement dans le fichier (le plus récent) = 20
0x26E1- 0x26E3	9954– 9956	L	_	_	DATE	_	Р	Date de la dernière réinitialisation du fichier. Réglage d'usine = 0x8000 0x8000 0x8000

Enregistrement des événements de protection de la maintenance

L'historique des événements de protection de la maintenance contient un nombre fixe d'enregistrements et tous les enregistrements contiennent un nombre fixe de registres :

Nombre d'enregistrements	Registres	Туре	Description		
1	1-4	XDATE	Dernière coupure d'alimentation		
	5-6	_	Réservé		
2	1-3	DATE	Date/heure de la dernière réinitialisation du compteur		
	4	INT16U	Nombre d'opérations de sortie pour le relais 1		
	5-6	_	Réservé		
3-6	1-3	DATE	Date/heure de la dernière réinitialisation du compteur		
	4	INT16U	Nombre d'opérations de sortie pour les relais 2 à 5		
	5-6	_	Réservé		
7	1-3	DATE	Date/heure de la dernière réinitialisation du compteur		
	4	INT16U	Nombre d'opérations de sortie pour le relais 6		
	5-6	_	Réservé		
8	1-3	DATE	Date/heure du dernier enregistrement mis à jour		
	4	INT16U	Usure maximale des contacts		
	5-6	-	Réservé		
9	1-3	DATE	Date/heure du dernier enregistrement mis à jour		
	4	INT16U	Puissance déwattée maximum		
	5-6	_	Réservé		
10	1-3	DATE	Date/heure du dernier enregistrement mis à jour		
	4	INT16U	Indicateur de batterie, page 161		
	5-6	_	Réservé		
11	1-3	DATE	Date/heure du dernier enregistrement mis à jour		
	4	INT16U	Nombre de coupures d'alimentation		
	5-6	_	Réservé		
12-15	1-6	_	Réservé		
16	1-3	DATE	Date/heure du dernier enregistrement mis à jour		
	4	INT16U	Nombre maximal de réinitialisations		

Nombre d'enregistrements	Registres	Туре	Description				
	5-6	_	Réservé				
17	1-6	_	Réservé				
18	1-3	DATE	Date/heure du dernier enregistrement mis à jour				
	4	INT16U	Disjoncteur du courant de défaut de crête maximum ayant été ouvert				
	5-6	_	Réservé				
19-20	1-6	_	Réservé				

Commandes du déclencheur MicroLogic

Contenu de ce chapitre

iste des commandes et des codes d'erreur MicroLogic	172
Commandes de configuration des mesures	173

Liste des commandes et des codes d'erreur MicroLogic

Liste des commandes

Le tableau suivant répertorie les commandes des déclencheurs MicroLogic et indique les codes de commande et les profils utilisateur correspondants. Suivez les procédures d'exécution des commandes décrites , page 57:

Commande	Code de commande	Profil utilisateur
Configurer la présence d'ENVT , page 173	46472	Administrateur
Réinitialiser minimum/maximum , page 173	46728	Administrateur ou Opérateur
Configuration du signe de la puissance , page 174	47240	Administrateur
Power factor sign configuration (Configuration du signe du facteur de puissance) , page 175	47241	Administrateur
Configuration du mode d'accumulation d'énergie , page 175	47242	Administrateur
Configuration de la demande de courant , page 175	47243	Administrateur
Configuration de la demande de puissance , page 176	47244	Administrateur
Configurer l'affichage de la tension nominale Vn , page 176	47245	Administrateur

Pour plus d'informations concernant les paramètres de protection, voir le *Guide utilisateur Masterpact Modbus hérité*.

Codes d'erreur

Les codes d'erreurs générés par les déclencheurs MicroLogic sont les codes d'erreurs génériques, page 60.

Commandes de configuration des mesures

Configurer la présence d'ENVT

L'utilisateur peut lire les paramètres de la présence d'ENVT (External Neutral Voltage Tap) au registre 3314, page 152.

Pour régler la présence d'ENVT, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	_	_	INT16U	46472	E/P	Code de commande = 46472
0x1F40	8001	_	-	INT16U	12	E/P	Nombre de paramètres (octets) = 12
0x1F41	8002	_	_	INT16U	4609	E/P	Destination = 4609 (0x1201)
0x1F42	8003	_	_	INT16U	1	E/P	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	-	CHAÎNE D'OC- TETS	_	E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45	8006	_	_	INT16U	0-1	E/P	0 = ENVT n'est pas présent
							1 = ENVT est présent

Réinitialiser minimum/maximum

La commande Réinitialiser minimum/maximum réinitialise les valeurs minimales des mesures en temps réel (registres 1300 à 1599) et les valeurs maximales des mesures en temps réel (registres 1600 à 1899), page 122.

La commande Réinitialiser minimum/maximum réinitialise les mesures d'énergie (registres 2000 à 2027), page 124.

La commande Réinitialiser minimum/maximum réinitialise les mesures de crête de la demande (registres 2200 à 2241), page 125.

Pour réinitialiser les valeurs minimales/maximales des mesures, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x1F3F	8000	_	-	INT16U	46728	_	_	Code de commande = 46728
0x1F40	8001	-	_	INT16U	12	_	-	Nombre de paramètres (octets) = 12
0x1F41	8002	_	_	INT16U	4609	_	_	Destination = 4609 (0x1201)
0x1F42	8003	-	_	INT16U	1	_	-	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	-	CHAÎNE D'OC- TETS	-	-	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	-	-	INT16U	-	_	-	Réinitialiser minimum/ maximum des variables de mesure : Pour réinitialiser la variable de mesure, configurez le bit sur 1. Pour conserver les valeurs actuelles, configurez le bit sur 0.
						A/E/P	0	Réinitialiser le courant minimum/maximum (I1, I2, I3,

Adresse	Registre	X	Unité	Туре	Plage	A/E/P	Bit	Description
								IN, Imax, Ig, IΔn, lavg et lunbal)
						E/P	1	Réinitialiser la tension minimum/maximum (V12, V13, V23, V1N, V2N, V3N, VavgL-L, VavgL-N et Vunbal)
						E/P	2	Réinitialiser la puissance minimum/maximum (puissance active, puissance réactive, puissance apparente et puissance de distorsion)
						E/P	3	Réinitialiser le facteur de puissance minimum/ maximum et cosф
						E/P	4	Réinitialiser la distorsion harmonique totale (THD) minimum/maximum
						E/P	5	Réinitialiser la valeur de crête de la demande de courant
						E/P	6	Réinitialiser la valeur de crête des demandes de puissance active, puissance réactive et puissance apparente
						E/P	7	Réinitialiser la fréquence minimale/maximale
						-	8	Non applicable
						E/P	9	Réinitialiser l'énergie (active, réactive, apparente)
						_	10-15	Réservé

Configuration du signe de la puissance

L'utilisateur peut lire la configuration du signe de la puissance au registre 3316 Signe de la puissance, page 152.

Pour régler les paramètres du signe de la puissance, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	-	_	INT16U	47240	Р	Code de commande = 47240
0x1F40	8001	-	_	INT16U	12	Р	Nombre de paramètres (octets) = 12
0x1F41	8002	_	-	INT16U	4609	Р	Destination = 4609 (0x1201)
0x1F42	8003	-	_	INT16U	1	Р	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	-	CHAÎNE D'OC- TETS	-	Р	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45	8006	-	_	INT16U	0-1	Р	Signe de la puissance: 0 = la puissance active circule de l'amont (haut) vers l'aval (bas) (réglage d'usine) 1 = la puissance active circule de l'aval (bas) vers l'amont (haut).

Configuration du signe du facteur de puissance

L'utilisateur peut lire la configuration du signe du facteur de puissance au registre 3318, page 153.

Pour régler les paramètres du signe du facteur de puissance, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	Х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	_	_	INT16U	47241	E	Code de commande = 47241
0x1F40	8001	_	_	INT16U	12	E	Nombre de paramètres (octets) = 12
0x1F41	8002	_	_	INT16U	4609	E	Destination = 4609 (0x1201)
0x1F42	8003	_	_	INT16U	1	E	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	_	CHAÎNE D'OC- TETS	_	E	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45	8006	_	_	INT16U	0-2	E	Convention de signe s'appliquant au facteur de puissance et au facteur de puissance fondamentale (cos¢): 0 = convention CEI
							2 = convention IEEE (réglage d'usine)

Configuration du mode d'accumulation d'énergie

L'utilisateur peut lire la configuration du mode d'accumulation d'énergie au registre 3324, page 153.

Pour régler les paramètres du mode d'accumulation d'énergie, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	Х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	-	_	INT16U	47242	E/P	Code de commande = 47242
0x1F40	8001	-	_	INT16U	12	E/P	Nombre de paramètres (octets) = 12
0x1F41	8002	-	_	INT16U	4609	E/P	Destination = 4609 (0x1201)
0x1F42	8003	-	_	INT16U	1	E/P	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	-	CHAÎNE D'OC- TETS	_	E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45	8006	-	-	INT16U	0-1	E/P	Mode d'accumulation d'énergie: 0 = accumulation absolue (réglage d'usine) 1 = accumulation signée

Configuration de la demande de courant

L'utilisateur peut lire la durée de la fenêtre de calcul de la demande de courant au registre 3352, page 154.

L'utilisateur peut lire les paramètres de la demande de courant du registre 2200 à 2207, page 125.

Pour démarrer la demande de courant, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	Х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	-	-	INT16U	47243	E/P	Code de commande = 47243
0x1F40	8001	-	-	INT16U	12	E/P	Nombre de paramètres (octets) = 12
0x1F41	8002	-	-	INT16U	4609	E/P	Destination = 4609 (0x1201)
0x1F42	8003	-	-	INT16U	1	E/P	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	_	CHAÎNE D'OCTETS	-	E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45	8006	_	Min	INT16U	5-60	E/P	Durée de la fenêtre de calcul de la demande de courant, réglable par incréments de 1. La valeur définie en usine est de 15 minutes (fenêtre glissante).

Configuration de la demande de puissance

L'utilisateur peut lire la méthode de calcul de la demande de puissance du registre 3354 à 3355, page 154.

L'utilisateur peut lire les paramètres de la demande de puissance du registre 2224 à 2237, page 126.

Pour démarrer la demande de puissance, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	Х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	_	_	INT16U	47244	E/P	Code de commande = 47244
0x1F40	8001	-	_	INT16U	14	E/P	Nombre de paramètres (octets) = 14
0x1F41	8002	-	-	INT16U	4609	E/P	Destination = 4609 (0x1201)
0x1F42	8003	-	-	INT16U	1	E/P	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	_	CHAÎNE D'OCTETS	_	E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45	8006	-	_	INT16U	0-5	E/P	Méthode de calcul de la demande de puissance (type de fenêtre) : 0 = glissante (réglage d'usine) 2 = fixe 5 = synchronisation sur la communication
0x1F46	8007	_	Min	INT16U	5-60	E/P	Durée de la fenêtre de calcul de la demande de puissance, réglable par incréments de 1. Le réglage d'usine est 15 minutes.

Configurer l'affichage de la tension primaire nominale Vn

L'utilisateur peut lire la tension nominale au registre 9616, page 155.

Pour régler les paramètres de l'affichage de la tension primaire nominale Vn, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	X	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	-	_	INT16U	47245	E/P	Code de commande = 47245
0x1F40	8001	_	-	INT16U	12	E/P	Nombre de paramètres (octets) = 12

Adresse	Registre	Х	Unité	Туре	Plage	A/E/P	Description	
0x1F41	8002	-	_	INT16U	4609	E/P	Destination = 4609 (0x1201)	
0x1F42	8003	-	_	INT16U	1	E/P	Type de sécurité de la commande	
0x1F43- 0x1F44	8004-8005	-	-	CHAÎNE D'OCTETS	_	E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur	
0x1F45	8006	_	V	INT16U	0-65535	E/P	Tension primaire nominale Vn (réglage d'usine = 690 V)	

Données des modules BCM ULP pour les disjoncteurs ComPacT NS

Contenu de cette partie

Registres du module BCM ULP	179
Fichiers du module BCM ULP	19
Commandes du module BCM ULP	194

Registres du module BCM ULP

Contenu de ce chapitre

Identification du module BCM ULP	
Etat du disjoncteur	181
Informations horodatées	
Compteurs	
Historique des déclenchements	

Identification du module BCM ULP

Identification du produit

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0202	515	L	_	-	INT16U	15139	A/E/P	Identification du produit = 15139 pour le module BCM ULP

Identifiant du module BCM ULP

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0215- 0x0216	534-535	L/E	-	_	CHAINE D'OC- TETS	0x0000- 0x7F7F	A/E/P	Identifiant court du module BCM ULP codé sur 4 caractères ASCII Réglage d'usine = 0x0000
0x0217- 0x021E	536-543	L/E	-	_	CHAINE D'OC- TETS	0x0000- 0x7F7F	A/E/P	Identifiant long du module BCM ULP codé sur 16 caractères ASCII Réglage d'usine = 0x0000

Version de firmware du module BCM ULP

La version du firmware du module BCM ULP commence par un caractère V et présente le format suivant : VX.Y.Z.

La version de firmware est codée comme suit : VX.Y.Z = VX*1000 + Y*100 + Z*10

Par exemple, si la valeur du registre est égale à 2000, la version du firmware du module BCM ULP est égale à V2.0.0.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0240	577	L	-	_	INT16U	_	A/E/P	Version de firmware du module BCM ULP

Etat du disjoncteur

Cause de déclenchement

Le registre de cause de déclenchement indique l'état actuel du déclenchement.

- Si le bit de déclenchement est réglé sur 0, alors le déclenchement n'est pas actif.
- Si le bit de déclenchement est réglé sur 1, alors le déclenchement est actif.

Le bit est réinitialisé dès que le disjoncteur est fermé à nouveau.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x0289	650	L	_	-	INT16U	_	-	-	Cause du déclenchement pour les fonctions de protection de base
							A/E/P	0	Protection Long retard Ir
							Р	1	Protection Court retard Isd
							A/E	1	Protection court retard Isd ou protection instantanée li
							Р	2	Protection instantanée li
							A/E/P	3	Protection Terre Ig
							A/P	4	Protection différentielle (Vigi)
							A/E/P	5	Protection instantanée intégrée
							A/E	6	Other protection
							Р		Panne interne (température)
							A/E/P	7	Panne interne (surtension)
							Р	8	Autre protection (voir registre 651)
							-	9-14	Réservé
							A/E/P	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.
0x028A	651	L	_	-	INT16U	_	-	-	Cause du déclenchement pour les fonctions de protection avancée
							Р	0	Déséquilibre de courant
							Р	1	Surintensité sur phase 1
							Р	2	Surintensité sur phase 2
							Р	3	Surintensité sur phase 3
							Р	4	Surintensité sur neutre
							Р	5	Sous-tension
							Р	6	Surtension
							Р	7	Déséquilibre de tension
							Р	8	Surcharge en puissance
							Р	9	Puissance déwattée
							Р	10	Sous-fréquence
							Р	11	Surfréquence

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Bit	Description
							Р	12	Rotation des phases
							Р	13	Délestage de charge en fonction du courant
							Р	14	Délestage de charge en fonction de la puissance
							_	15	Si ce bit est à 1, les bits 0 à 14 ne sont pas valides.

Inhibition de la commande de fermeture

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Bit	Description
0x0291	658	L	-	_	INT16U	-	A/E/P	_	Validité de chaque bit du registre d'état d'inhibition de la commande de fermeture
0x0292	659	L	_	_	INT16U	_	A/E/P	_	Etat d'inhibition de la commande de fermeture
								0	Inhibition de la commande de fermeture activée par le module IO
								1	inhibition de la commande de fermeture activée par la commande à distance
								2-15	Réservé

Mode de commande locale/à distance

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0293	660	L	_	_	INT16U	0-1	A/E/P	Mode sélectionné dans le FDM121 ou le module IO: 0 = mode de commande distante (réglage d'usine)
								1 = mode de commande locale

Etat du disjoncteur

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
0x0294	661	L	-	_	INT16U	-	A/E/P	_	Registre d'état du disjoncteur
								0	Contact de signalisation d'état OF
									0 = Le disjoncteur est ouvert.
									1 = Le disjoncteur est fermé.
								1	Contact de signalisation de déclenchement SD
									0 = le disjoncteur n'est pas déclenché.
									1 = Le disjoncteur est déclenché suite à un défaut électrique, par dérivation ou par bouton-poussoir.
									Bit toujours égal à 0 pour les disjoncteurs MasterPact et ComPacT NS avec motor mechanism.
								2	Contact de signalisation de déclenchement sur défaut SDE

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Bit	Description
									0 = le disjoncteur n'est pas déclenché sur un défaut électrique.
									1 = le disjoncteur est déclenché sur un défaut électrique (y compris test de défaut à la terre et test différentiel).
								3	Contact à ressort armé CH (uniquement avec MasterPact
									0 = ressort désarmé
									1 = ressort armé
									Bit toujours égal à 0 pour le disjoncteur ComPacT NS.
								4	Réservé
								5	Contact prêt à fermer PF (uniquement avec les disjoncteurs MasterPact)
									0 = Non prêt à fermer
									1 = Prêt à fermer
									Bit toujours égal à 0 pour les disjoncteurs ComPacT NS.
								6	Distinction entre les disjoncteurs ComPacT NS et MasterPact NT/NW
									0 = ComPacT NS
									1 = MasterPact NT/NW
								7	Distinction entre le disjoncteur ComPacT NS et le disjoncteur ComPacT NS avec motor mechanism
									0 = ComPacT NS
									1 = ComPacT NS avec motor mechanism
								8–15	Réservé

Auto/Manu

Ce registre affiche le mode réel utilisé : automatique ou manuel. Ces modes peuvent être modifiés uniquement localement via l'IHM du déclencheur MicroLogic P.

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x029D	670	L	_	1	INT16	01	A/E/P	0 = Manu : l'ouverture et la fermeture du disjoncteur via l'interface de communication sont désactivées. 1 = Auto : l'ouverture et la fermeture du disjoncteur via l'interface de communication sont activées (réglage d'usine).

Activation du jeu de données hérité

Le jeu de données hérité est disponible uniquement si le module BCM ULP est équipé d'une version du firmware supérieure ou égale à V2.0.0 (le registre 577 doit être supérieur ou égal à 2000).

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x031F	800	L/E	-	_	_	01	A/E/P	Activation du jeu de données hérité
								0 = Non activé
								1 = Activé
								Réglage d'usine = 0 si la version du firmware est inférieure à V3.0.0
								Réglage d'usine = 1 si la version du firmware est supérieure ou égale à V3.0.0

NOTE: Si la version du firmware du module BCM ULP est supérieure ou égale à V3.0.0, dans une configuration 2 fils + ULP, la valeur de ce registre est toujours égale à 1 et elle ne peut pas être modifiée.

Paramètre de communication

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0325	806	L/E	_	-	_	0-1	A/E/P	4 fils / 2 fils + paramètre de communication ULP
								0 = 4 fils
								1 = 2 fils + ULP
								Réglage d'usine = 0 si la version du firmware du module BCM ULP est inférieure à V4.0.0
								Réglage d'usine = 1 si la version du firmware du module BCM ULP est supérieure ou égale à V4.0.0

Réglage de la réduction de la consommation d'énergie (ERMS)

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0326	807	L	-	-	INT16U	_	Р	Validité du registre du mode ERMS : validité de chaque bit du registre du mode ERMS.
								0 = Non valide
								1 = Valide
0x0327	808	L	-	_	INT16U	_	Р	Mode ERMS :
								Bit 0 = 0 : Mode ERMS désactivé
								Bit 0 = 1 : Mode ERMS activé
								Bit 1 = 0 : Mode ERMS non dégradé
								Bit 1 = 1 : Mode ERMS dégradé

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0328- 0x0329	809–810	L	-	A	INT32U	2 x In-15 x In (limité aux paramètres li)	Р	Paramètre ERMS : valeur de déclenchement pour le paramètre ERMS 2 x In jusqu'à la valeur li actuelle (courant de déclenchement instantané). Réglage d'usine = 2 x In
0x032A- 0x032B	811-812	L	-	-	-	_	_	Réservé

Usure du contact

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x032C	813	L	_	_	INT16U	0-300	Р	Seuil d'usure du contact

Informations horodatées

Description générale

Les informations horodatées permettent de connaître toutes les dates liées aux données importantes (date du dernier déclenchement, date du dernier actionnement MX, déclenchement XF).

Date du dernier événement

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x029E- 0x02A0	671-673	L	-	-	DATE	-	A/E/P	Date du dernier actionnement de l'auxiliaire MX
0x02A2- 0x02A4	675-677	L	-	-	DATE	_	A/E/P	Date du dernier actionnement de l'auxiliaire XF
0x02A6- 0x02A9	679-682	L	-	-	XDATE	-	A/E/P	Date actuelle du module BCM ULP
0x02AB- 0x02AD	684-686	L	-	_	DATE	_	A/E/P	Date de la dernière ouverture du disjoncteur
0x02AE- 0x02B0	687-689	L	-	-	DATE	-	A/E/P	Date de la dernière fermeture du disjoncteur
0x02B1- 0x02B3	690-692	L	-	-	DATE	-	A/E/P	Date du dernier déclenchement sans défaut électrique
0x02B4- 0x02B6	693-695	L	-	_	DATE	_	A/E/P	Date du dernier déclenchement avec défaut électrique
0x02B7- 0x02B9	696-698	L	-	-	DATE	-	A/E/P	Date du dernier état « prêt à fermer PF »
0x02BA- 0x02BC	699-701	L	-	_	DATE	-	A/E/P	Date du dernier événement « Fin de l'ordre d'ouverture ». Cet événement se produit dans les cas suivants : • Absence d'action sur le bouton-poussoir d'ouverture à l'avant de l'appareil
								Pression du bouton-poussoir de réarmement après déclenchement (appareil réarmé)
								Mise sous tension du déclencheur voltmétrique à manque de tension MN (si présent)
0x02BD- 0x02BF	702-704	L	-	-	DATE	-	A/E/P	Date du dernier état « Ressort armé CH »

Compteurs

Description générale

Le module BCM ULP dispose de compteurs qui aident à gérer le disjoncteur.

Les compteurs du module BCM ULP présentent les propriétés suivantes :

- Tous les compteurs sont enregistrés dans une mémoire non volatile pour éviter toute perte de données en cas de perte d'alimentation.
- Le compteur OF cumulatif est en lecture seule. Il s'arrête d'incrémenter lorsqu'il atteint une valeur maximale de 65535.
- Vous pouvez prédéfinir tous les compteurs avec une valeur comprise entre 0 et 65535 (à l'exception du compteur OF cumulatif). Les compteurs parcourent automatiquement un cycle de valeurs de 65535 à 0. Les compteurs parcourent automatiquement un cycle de valeurs de 65535 à 0.
- Un seuil est associé au compteur OF et au compteur de commande Fermer le disjoncteur.

Vous pouvez régler le seuil sur toute valeur comprise entre 0 et 65534. Le réglage d'usine est 5000. Une alarme est générée dès que le compteur atteint le seuil.

Compteurs du module BCM ULP

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0229	554	L	-	-	INT16U	0-65535	A/E/P	Compteur relatif au nombre de fois où le module BCM ULP est alimenté
0x022A	555	L	1	ı	INT16U	0-65535	A/E/P	Compteur relatif au nombre de fois où le module BCM ULP est réinitialisé en cas de coupure d'alimentation ou non

Seuils des compteurs

Adresse	Registre	L/E	X	Unité	Туре	Plage	A/E/P	Description
0x0243	580	L/E	-	_	INT16U	0-65535	A/E/P	Seuil du compteur OF
								Réglage usine = 5000.
0x0244	581	L/E	_	_	INT16U	0-65535	A/E/P	Seuil du compteur de commande de fermeture Réglage usine = 5000.
								rteglage usine - 5000.

Compteurs de changements d'état du disjoncteur

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x0295	662	L	_	-	INT16	0-65535	A/E/P	Compteur OF cumulatif (compteur ouvert à fermé non réinitialisable)
0x0296	663	L/E	_	-	INT16	0-65535	A/E/P	Compteur OF (compteur ouvert à fermé réinitialisable)
0x0297	664	L/E	-	_	INT16	0-65535	A/E/P	Compteur SD (fermer en position SD)
0x0298	665	L/E	_	_	INT16	0-65535	A/E/P	Compteur SDE (fermer en position SDE)

Compteurs de déclenchements MX et XF

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x02A1	674	L	_	-	INT16U	0-65535	A/E/P	Compteur d'actionnements MX
0x02A5	678	L	_	_	INT16U	0-65535	A/E/P	Compteur d'actionnements XF

Historique des déclenchements

Description générale

Les registres d'historique des déclenchements décrivent les 17 derniers déclenchements. Le format de l'historique des déclenchements correspond à une série de 17 enregistrements stockés dans une pile de type FIFO (premier entré, premier sorti). Le dernier enregistrement efface le plus ancien. Chaque enregistrement est composé de 7 registres décrivant un déclenchement.

Numéro de l'enregistrement du déclenchement

Une requête de lecture de 7 x (n) registres est nécessaire pour lire les n derniers enregistrements des déclenchements, où 7 est le nombre de registres pour chaque enregistrement des déclenchements.

Par exemple, une requête de lecture de 7 x 3 = 21 registres est nécessaire pour lire les 3 derniers enregistrements de déclenchements de l'historique des déclenchements :

- Les 7 premiers registres décrivent le premier enregistrement de déclenchement.
- Les 7 registres qui suivent décrivent le deuxième enregistrement de déclenchement.
- Les 7 derniers registres décrivent le troisième enregistrement de déclenchement.

Adresse	Registre	Description
0x0095-0x009B	150-156	Enregistrement de déclenchement 0
0x009C-0x00A2	157-163	Enregistrement de déclenchement 1
0x00A3-0x00A9	164-170	Enregistrement de déclenchement 2
0x00AA-0x00B0	171-177	Enregistrement de déclenchement 3
0x00B1-0x00B7	178-184	Enregistrement de déclenchement 4
0x00B8-0x00BE	185-191	Enregistrement de déclenchement 5
0x00BF-0x00C5	192-198	Enregistrement de déclenchement 6
0x00C6-0x00CC	199-205	Enregistrement de déclenchement 7
0x00CD-0x00D3	206-212	Enregistrement de déclenchement 8
0x00D4-0x00DA	213-219	Enregistrement de déclenchement 9
0x00DB-0x00E1	220-226	Enregistrement de déclenchement 10
0x00E2-0x00E8	227-233	Enregistrement de déclenchement 11
0x00E9-0x00EF	234-240	Enregistrement de déclenchement 12
0x00F0-0x00F6	241-247	Enregistrement de déclenchement 13
0x00F7-0x00FD	248-254	Enregistrement de déclenchement 14
0x00FE-0x0104	255-261	Enregistrement de déclenchement 15
0x0105-0x010B	262-268	Enregistrement de déclenchement 16

Enregistrement de déclenchement

Une requête de lecture de 7 registres est nécessaire pour lire un enregistrement de déclenchement.

L'ordre et la description des registres des enregistrements de déclenchements sont les mêmes que pour l'enregistrement de déclenchement 1 :

Enregistrem	Enregistrement de déclenchement 1 (enregistrement du déclenchement le plus récent)									
Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description		
0x0095	150	L	1	-	INT16U	0-65535	E/P	Code du déclenchement		
0x0096- 0x0098	151-153	L	1	-	ULP	_	E/P	Date de l'événement (déclenchement ou acquittement)		
0x0099	154	L	1	-	INT16U	1-2	E/P	Type d'événement MSB = 0 (réservé) Apparition de l'événement : LSB = 1 Achèvement de l'événement : LSB = 2		
0x009A	155	-	-	-	_	_	_	Réservé		
0x009B	156	-	_	_	_	_	_	Réservé		

Codes de déclenchement

Code de déclenchement	Description
1000 (0x03E8)	Déclenchement suite à la protection Long retard Ir
1001 (0x03E9)	Déclenchement suite à la protection Court retard Isd
1002 (0x03EA)	Déclenchement suite à la protection Instantanée li
1003 (0x03EB)	Déclenchement suite à la protection Terre Ig
1004 (0x03EC)	Déclenchement suite à la protection différentielle l∆n
1005 (0x03ED)	Déclenchement suite à la protection instantanée intégrée l >>
1006-1007 (0x03EE-0x03EF)	Réservé
1008 (0x03F0)	Déclenchement suite à la protection avancée
1009 (0x03F1)	Déclenchement suite à la protection avancée étendue
1010-1015 (0x03F2-0x03F7)	Réservé
1016 (0x3F8)	Déséquilibre des courants
1017 (0x3F9)	Demande maximale I1
1018 (0x3FA)	Demande maximale I2
1019 (0x3FB)	Demande maximale I3
1020 (0x3FC)	Demande maximale IN
1021 (0x3FD)	Sous-tension Sous-tension
1022 (0x3FE)	Surtension
1023 (0x3FF)	Déséquilibre de tension
1024 (0x400)	Réservé
1025 (0x401)	Puissance déwattée
1026 (0x402)	Sous-fréquence
1027 (0x403)	Surfréquence
1028 (0x404)	Rotation des phases
1029 (0x405)	Délestage de charge en fonction du courant
1030 (0x406)	Délestage de charge en fonction de la puissance

Fichiers du module BCM ULP

Contenu de ce chapitre

Historique des événements du gestionnaire de disjoncteur

Description générale

Le système stocke les événements concernant le contrôle des disjoncteurs (par exemple l'ouverture ou la fermeture des contacts) dans le fichier n°30.

Ce fichier comporte 100 enregistrements et chaque enregistrement est constitué de 5 registres.

Ce fichier est réinitialisé en cas de coupure de l'alimentation 24 V CC sur le module BCM ULP ou de modification du paramètre de communication 4W/ 2W + ULP.

En-tête du fichier

Le tableau suivant décrit le contenu de l'en-tête du fichier :

Adresse	Registre	L/E	Х	Unité	Туре	Plage	A/E/P	Description
0x02CD	718	L	_	_	INT16U	_	A/E/P	Etat du fichier :
								0x0000 = Fichier désactivé
								0xFFFF = Fichier activé (réglage d'usine)
0x02CE	719	L	-	-	INT16U	_	A/E/P	Type de fichier = 30
0x02CF	720	L	_	-	INT16U	_	A/E/P	Allocation du fichier = 0xFFFF
0x02D0	721	L	1	-	INT16U	_	A/E/P	Taille d'un enregistrement = 5 registres
0x02D1	722	L	_	-	INT16U	_	A/E/P	Mode de remplissage du fichier :
								0 = Circulaire

Etat du fichier

Le tableau suivant décrit le contenu de l'état du fichier :

Adresse	Registre	L/E	х	Unité	Туре	Plage	A/E/P	Description
0x02DD	734	L	1	_	INT16U	100	A/E/P	Taille d'un fichier = 100 enregistrements
0x02DE	735	L	1	_	INT16U	5	A/E/P	Taille d'un enregistrement = 5 registres
0x02E0	737	L	1	_	INT16U	0-100	A/E/P	Nombre d'enregistrements dans le fichier
0x02E1	738	L	1	-	INT16U	0-8000	A/E/P	Numéro de séquence du premier enregistrement dans le fichier (le plus ancien)
0x02E2	739	L	1	-	INT16U	0-8000	A/E/P	Numéro de séquence du dernier enregistrement dans le fichier (le plus récent)
0x02E3- 0x02E5	740-742	L	_	-	DATE	-	Р	Date de la dernière réinitialisation du fichier Réglage d'usine = 0x8000 0x8000 0x8000

Enregistrement des événements

Le tableau suivant décrit le format d'un enregistrement dans l'historique des événements du disjoncteur :

R	egistres	Туре	Description
1-	4	XDATE	Date de l'événement
5		INT16U	Numéro de l'événement (voir le tableau ci-dessous)

Événements

Le tableau suivant décrit les événements dans l'historique des événements du disjoncteur :

Numéro de l'événement	Description
1	REINITIALISATION ou système alimenté
2	Données de configuration dans le gestionnaire de châssis
3	Ressort chargé
4	Disjoncteur ouvert (O)
5	Disjoncteur fermé (F)
6	Disjoncteur déclenché (SD)
7	Disjoncteur déclenché sur défaut (SD)
8-9	Réservé
10	Commande de fermeture entrée à distance (AUTO) (XF)
11	Commande d'ouverture entrée à distance (AUTO) (MX)
12	Modification de la configuration Modbus (adresse, débit en bauds et parité)
13	Réinitialisation de l'historique des événements
14	Mise à jour de l'horloge acceptée localement
15	Mise à jour de l'horloge rejetée localement
	(synchronisation par le superviseur)

Commandes du module BCM ULP

Contenu de ce chapitre

Liste des commandes et des codes d'erreurs du module BCM ULP	195
Commandes de contrôle du disjoncteur	196

Liste des commandes et des codes d'erreurs du module BCM ULP

Liste des commandes

Le tableau ci-après répertorie les commandes du module BCM ULP avec les codes de commande et les profils utilisateur correspondants. Suivez les procédures d'exécution des commandes décrites , page 57.

Commande	Code de commande	Profil utilisateur
Ouvrir le disjoncteur , page 196	904	Administrateur ou Opérateur
Fermer le disjoncteur , page 196	905	Administrateur ou Opérateur
Activation/inhibition de la commande de fermeture , page 196	910	Administrateur ou Opérateur

Codes d'erreur

Outre les codes d'erreur génériques , page 60, les commandes du module BCM ULP génèrent les codes d'erreur suivants dans le registre 8021 :

Code d'erreur	Description
4759 (0x1297)	Le disjoncteur est déclenché. Il doit être réinitialisé avant la commande.
4760 (0x1298)	Le disjoncteur est déjà fermé.
4761 (0x1299)	Le disjoncteur est déjà ouvert.
4763 (0x129B)	FDM121 en mode de contrôle local. Les commandes à distance ne sont pas autorisées.
4766 (0x129E)	La commande précédente est toujours en cours d'exécution.
4767 (0x12A0)	L'inhibition de la commande de fermeture est activée.
4777 (0x12A9)	Déjà en état d'interrogation (valide uniquement pour l'activation/l'inhibition de la commande de fermeture

Tout autre code d'erreur positif signale une erreur interne.

Commandes de contrôle du disjoncteur

Ouvrir le disjoncteur

Pour ouvrir le disjoncteur, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	х	Unité	Туре	Plage	A/E/P	Description
0x1F3F	8000	_	_	INT16U	904 A/E/P Code de commande = 904		Code de commande = 904
0x1F40	8001	-	_	INT16U	10 A/E/P Nombre de paramètres (octets) = 10		Nombre de paramètres (octets) = 10
0x1F41	8002	_	_	INT16U	4609	A/E/P	Destination = 4609 (0x1201)
0x1F42	8003	_	_	INT16U	1 A/E/P Type de sécurité de la commande		Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	-	CHAÎNE D'OC- TETS	_	A/E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur

Fermer le disjoncteur

Pour fermer le disjoncteur, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	х	Unité	Туре	Plage	A/E/P	Description	
0x1F3F	8000	_	_	INT16U	905	A/E/P Code de commande = 905		
0x1F40	8001	_	-	INT16U	10	A/E/P	E/P Nombre de paramètres (octets) = 10	
0x1F41	8002	-	-	INT16U	4609	A/E/P	Destination = 4609 (0x1201)	
0x1F42	8003	-	-	INT16U	1	A/E/P Type de sécurité de la commande		
0x1F43- 0x1F44	8004-8005	-	_	CHAÎNE D'OCTETS	-	A/E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur	

Activation/inhibition de la commande de fermeture d'un disjoncteur

Pour activer ou inhiber la commande de fermeture d'un disjoncteur, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	х	Unité	Туре	Plage	A/E/P	Description	
0x1F3F	8000	-	_	INT16U	910	A/E/P	Code de commande = 910	
0x1F40	8001	_	_	INT16U	13	A/E/P	Nombre de paramètres (octets) = 13	
0x1F41	8002	-	_	INT16U	4609	A/E/P	Destination = 4609 (0x1201)	
0x1F42	8003	-	_	INT16U	1	A/E/P	Type de sécurité de la commande	
0x1F43- 0x1F44	8004-8005	-	-	CHAÎNE D'OCTETS	_	A/E/P	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur	
0x1F45	8006	-	_	INT16U	1	A/E/P	0 = Activation de la commande de fermeture 1 = Inhibition de la commande de fermeture	
0x1F46	8007	_	_	INT16U	-	A/E/P	Origine de la commande : 256 = commande envoyée via l'interface de communication (IFM ou IFE)	

Données des modules IO pour les disjoncteurs ComPacT NS

Contenu de cette partie

Registres du module IO	198
Événements du module IO	219
Commandes du module IO	

Registres du module IO

Contenu de ce chapitre

Entrées analogiques	199
Entrées numériques	
Sorties numériques	204
Paramètres du matériel	
Etat des entrées et des sorties numériques	208
Identification du module IO	
Etat des alarmes	
Applications	

Introduction

Ce sous-chapitre décrit les registres du module IO.

Le module IO 1 contient les registres 13824 à 15719.

Le module IO 2 contient les registres 16824 à 18719 :

 Les registres des paramètres du module IO 2 sont égaux aux registres des paramètres du module IO 1 plus 3000.

Exemple:

- Le registre 14599 contient le registre d'état des entrées numériques du module IO 1.
- Le registre 17599 contient le registre d'état des entrées numériques du module IO 2.
- L'ordre des registres est identique à celui des registres du module IO 1.
- Les caractéristiques (type d'accès, taille, plage de valeurs et unité) sont identiques à celles des registres du module IO 1.
- Les registres 15360 à 16109 qui contiennent les applications prédéfinies sont spécifiques au module IO 1 pour cette raison.

Entrées analogiques

Mappage des registres des entrées analogiques

Le tableau suivant décrit les entrées analogiques, ainsi que les registres et les adresses correspondants du module IO.

Module IO	Adresses d'entrée analogique	Registres d'entrée analogique	
IO 1	0x35FF-0x3668	13824–13929	
IO 2	0x41B7-0x4220	16824–16929	

Registres des entrées analogiques de IO 1

L'ordre et la description des registres des entrées analogiques de IO 2 sont identiques à ceux de IO 1.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x35FF- 0x3600	13824– 13825	-	-	_	-	Réservé
0x3601- 0x3602	13826– 13827	R	°C	FLOAT32	-50–250	Valeur de température Pt100 du capteur d'entrée analogique (actualisée toutes les secondes)
0x3603	13828	R	-	INT16U	0–1	Qualité des données de l'entrée analogique • 0 = Valide • 1 = Non valide
0x3604	13829	-	_	_	_	Réservé
0x3605- 0x3608	13830– 13833	R	_	DATETIME	_	Horodatage de la dernière modification de +/- 1 ° C de la valeur analogique
0x3609- 0x360C	13834– 13837	-	-	_	_	Réservé
0x360D- 0x360E	13838– 13839	R	°C	FLOAT32	-50–250	Valeur maximale Pt100 d'entrée analogique
0x360F- 0x3610	13840– 13841	R	°C	FLOAT32	-50–250	Valeur minimale Pt100 d'entrée analogique
0x3611- 0x3614	13842– 13845	R	-	DATETIME	_	Horodatage de la valeur minimale d'entrée analogique enregistrée
0x3615- 0x3618	13846– 13849	R	_	DATETIME	_	Horodatage de la valeur maximale d'entrée analogique enregistrée
0x3619- 0x361C	13850– 13853	R	_	DATETIME	_	Horodatage de la dernière réinitialisation des valeurs min/max d'entrée analogique enregistrée
0x361D-	13854-	R	_	INT32U	0-65534	Compteur du seuil 1 de température du tableau
0x361E	13855					Ce compteur s'incrémente lors de chaque dépassement du seuil 1.
0x361F-	13856-	R	_	INT32U	0-65534	Compteur du seuil 2 de température du tableau
0x3620	13857					Ce compteur s'incrémente lors de chaque dépassement du seuil 2.
0x3621-	13858-	R	_	INT32U	0-65534	Compteur du seuil 3 de température du tableau
0x3622	13859					Ce compteur s'incrémente lors de chaque dépassement du seuil 3.
0x3623- 0x363A	13860- 13883	R	-	OCTET STRING	-	Identification de l'entrée analogique codée sur 45 caractères ASCII(1)
0x363B	13884	R	-	INT16U	0–2	Type d'entrée analogique ⁽¹⁾ • 0 = Entrée analogique non valide (réglage d'usine) • 1 = Non applicable

Adresse	Registre	RW	Unité	Туре	Plage	Description
						• 2 = Pt100
0x363C	13885	-	_	_	-	Réservé
0x363D- 0x363E	13886– 13887	R	°C	FLOAT32	-50–250	Valeur de déclenchement du seuil 1 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 50 °C
0x363F- 0x3640	13888– 13889	R	s	FLOAT32	1–3600	Temporisation du seuil 1 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 10 s
0x3641- 0x3642	13890– 13891	R	°C	FLOAT32	-50–250	Valeur de perte d'information du seuil 1 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 45 °C
0x3643– 0x3644	13892– 13893	R	s	FLOAT32	1–3600	Temporisation de perte d'information du seuil 1 de la température du tableau (Pt100)(1)
						Réglage d'usine = 10 s
0x3645- 0x3646	13894– 13895	R	°C	FLOAT32	-50-250	Valeur de déclenchement du seuil 2 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 60 °C
0x3647- 0x3648	13896– 13897	R	s	FLOAT32	1–3600	Temporisation du seuil 2 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 10 s
0x3649– 0x364A	13898– 13899	R	°C	FLOAT32	-50-250	Valeur de perte d'information du seuil 2 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 55 °C
0x364B- 0x364C	13900– 13901	R	s	FLOAT32	1–3600	Temporisation de perte d'information du seuil 2 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 10 s
0x364D- 0x364E	13902– 13903	R	°C	FLOAT32	-50-250	Valeur de déclenchement du seuil 3 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 70 °C
0x364F- 0x3650	13904– 13905	R	s	FLOAT32	1–3600	Temporisation du seuil 3 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 10 s
0x3651- 0x3652	13906– 13907	R	°C	FLOAT32	-50-250	Valeur de perte d'information du seuil 3 de la température du tableau (Pt100)(1)
						Réglage d'usine = 65 °C
0x3653- 0x3654	13908– 13909	R	s	FLOAT32	1–3600	Temporisation de perte d'information du seuil 3 de la température du tableau (Pt100) ⁽¹⁾
						Réglage d'usine = 10 s
0x3655- 0x3656	13910– 13911	R	Ω	FLOAT32	200–650	Capteur température moteur - seuil défaut en ohms
0x3657– 0x3668	13912– 13929	-	_	_	_	Réservé

Entrées numériques

Mappage des registres des entrées numériques

Chaque description d'entrée numérique est composée de 80 registres. L'ordre et la description des entrées numériques 2, 3, 4, 5 et 6 sont identiques à ceux de l'entrée numérique 1.

Module IO	Numéro d'entrée numérique	Adresses d'entrée numérique	Registres d'entrée numérique
IO 1	11	0x3669-0x36B8	13930–14009
	12	0x36B9-0x3708	14010–14089
	13	0x3709-0x3758	14090–14169
	14	0x3759-0x37A8	14170–14249
	15	0x37A9-0x37F8	14250–14329
	16	0x37F9-0x3848	14330–14409
IO 2	11	0x4221-0x4270	16930–17009
	12	0x4271-0x42C0	17010–17089
	13	0x42C1-0x4310	17090–17169
	14	0x4311-0x4360	17170–17249
	15	0x4361-0x43B0	17250–17329
	16	0x43B1-0x4400	17330–17409

Registres de l'entrée numérique 1 de IO 1

L'ordre et la description des registres de l'entrée numérique 1 de IO 2 sont identiques à ceux de IO 1 :

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
0x3669	13930	R	_	INT16U	-	-	Validité de chaque bit du registre 13931 : • 0 = Non valide • 1 = Valide
0x366A	13931	R	_	INT16U	_	0	Etat de l'entrée numérique : o 0 = désactivé 1 = activé
						1	Etat de forçage de l'entrée numérique o = Non forcé 1 = Forcé
						2–15	Réservé
0x366B- 0x366E	13932– 13935	R	_	DATETIME	_	_	Horodatage pour la dernière transition d'entrée : Dernier front montant si l'entrée est configurée en mode NO (normalement ouvert) Dernier front descendant si l'entrée est configurée en mode NF (normalement fermé) Valide si le type de signal d'entrée correspond à une entrée numérique normale (non valide pour les impulsions d'entrée numérique).
0x366F- 0x3670	13936– 13937	-	-	_	-	_	Réservé
0x3671- 0x3672	13938– 13939	R	-	INT32U	0-4294967294	-	Valeur du compteur d'entrée

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
							Ce compteur s'incrémente pour chaque front montant rencontré au niveau de l'entrée. Valide si le type de signal d'entrée correspond à une entrée numérique normale.
0x3673- 0x3676	13940– 13943	R	-	DATETIME	-	_	Horodatage de la dernière préconfiguration/réinitialisation du compteur de changements d'état de l'entrée
							Valide si le type de signal d'entrée correspond à une entrée numérique normale.
0x3677- 0x3678	13944– 13945	R	-	INT32U	0-4294967294	_	Nombre d'impulsions reçues
UX3078	13945						Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
0x3679- 0x367C	13946– 13949	R	-	INT64	_	_	Valeur de consommation réinitialisable
							Valeur = poids de l'impulsion x nombre d'impulsions reçues
							Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
0x367D- 0x3680	13950– 13953	R	-	INT64	-	-	Valeur de consommation non réinitialisable cumulée
							Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
0x3681- 0x3684	13954– 13957	R	-	DATETIME	-	-	Horodatage de la dernière réinitialisation de la valeur de consommation réinitialisable
							Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
0x3685- 0x3686	13958– 13959	R	W	FLOAT32	-	_	Calcul de la puissance
							Valide si
							le type de signal d'entrée correspond à des impulsions d'entrée numérique
							les impulsions d'entrée proviennent du compteur d'impulsions d'énergie
0x3687- 0x369E	13960– 13983	R	_	OCTET STRING	-	_	Identification de l'entrée numérique codée sur 45 caractères ASCII(1)
0x369F- 0x36A0	13984– 13985	R	s	FLOAT32	0,003 – 1	_	Temps de filtrage de l'entrée numérique 1
0x36A1	13986	R	-	INT16U	0–1	-	Type de contact d'entrée ⁽¹⁾ • 0 = NO (contact normalement ouvert, réglage d'usine) • 1 = NF (contact normalement fermé)
0x36A2	13987	R	-	INT16U	0–1	-	Type des signaux d'entrée(1) • 0 = entrée numérique normale (réglage d'usine) • 1 = impulsions d'entrée numérique
0x36A3	13988	R	-	INT16U	0–1	-	Polarité des impulsions(1) • 0 = valeur basse à valeur haute (réglage d'usine) • 1 = valeur haute à valeur basse

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
							Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
0x36A4	13989	R	_	INT16U	1–4	_	Unité d'impulsion ⁽¹⁾
							1 = Wh (watt-heure, réglage d'usine)
							2 = VARh (volt ampère heure réactif)
							• 3 = VAh (volt ampère heure)
							• 4 = m³ (mètres cubes)
							Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
0x36A5-	13990–	R	_	FLOAT32	1–16777215	_	Poids de l'impulsion ⁽¹⁾ (2)
0x36A6	13991						Valide si le type de signal d'entrée correspond à des impulsions d'entrée numérique.
							Réglage d'usine = 1,0
0x36A7-	13992-	R	_	INT32U	1-4294967294	_	Valeur de seuil du compteur d'entrée ⁽¹⁾
0x36A8	13993						Valide si le type de signal d'entrée correspond à une entrée numérique normale.
							Réglage d'usine = 5 000
0x36A9- 0x36B8	13994– 14009	-	_	-	-	_	Réservé

⁽¹⁾ Valeur définie à l'aide du logiciel EcoStruxure Power Commission.

(2) Exemples:

- Si chaque impulsion en entrée représente 125 kWh et compte tenu du fait que les données de consommation doivent être exprimées en watt-heures, le poids de l'impulsion de consommation est égal à 125 000.
- Si chaque impulsion en entrée représente 1 gallon américain et compte tenu du fait que les données de consommation doivent être exprimées en mètres cubes, le poids de l'impulsion de consommation est égal à 0,003785.

Sorties numériques

Mappage des registres des sorties numériques

Chaque description de sortie numérique est composée de 60 registres. L'ordre et la description des sorties numériques 2 et 3 sont identiques à ceux de la sortie numérique 1.

Module IO	Numéro de sortie numérique	Adresses de sortie numérique	Registres de sortie numérique
IO 1	01	0x3849-0x3884	14410–14469
	O2	0x3885-0x38C0	14470–14529
	O3	0x38C1-0x38FC	14530–14589
IO 2	01	0x4401-0x443C	17410–17469
	O2	0x443D-0x4478	17470–17529
	O3	0x4479-0x44B4	17530–17589

Registres de la sortie numérique 1 de IO 1

L'ordre et la description des registres de la sortie numérique 1 de IO 2 sont identiques à ceux de IO 1 :

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
0x3849	14410	R	_	INT16U	-	-	Validité de chaque bit du registre 14411 : • 0 = Non valide • 1 = Valide
0x384A	14411	R-WC	-	INT16U	_	0	Réservé
						1	Etat de la sortie numérique : o 0 = désactivé 1 = Activé
		R				2	Etat forcé de la sortie numérique : 0 = Non forcé 1 = Forcé
						3– 15	Réservé
0x384B- 0x384E	14412– 14415	R		DATETIME	_	1	Horodatage pour la dernière transition de sortie : Dernier front montant si la sortie est configurée en mode NO (normalement ouvert) Dernier front descendant si la sortie est configurée en mode NF (normalement fermé)
0x384F- 0x3850	14416– 14417	_	_	-	-	_	Réservé
0x3851- 0x3852	14418– 14419	R	_	INT32U	1-4294967294	_	Compteur de sortie Ce compteur s'incrémente pour chaque front montant rencontré au niveau de la sortie.
0x3853- 0x3856	14420- 14423	R	-	DATETIME	-	-	Horodatage de la dernière réinitialisation du compteur de sortie
0x3857- 0x386E	14424– 14447	R	-	OCTET STRING	-	-	Identification de la sortie numérique codée sur 45 caractères ASCII
0x386F	14448	R	-	INT16U	0–2	_	Mode de fonctionnement de la sortie ⁽¹⁾ : • 0 = Sans auto-maintien (réglage d'usine)

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
							1 = Auto-maintien2 = Temporisé sans auto-maintien
0x3870	14449	R	S	INT16U	0-65534	-	Cyclique pour une valeur en mode temporisé sans auto-maintien(1) Le temps pour la sortie de rester alimentée lorsqu'elle se trouve en mode temporisé sans auto-maintien. (Réglage d'usine = 0)
0x3871	14450	R	-	INT16U	0–1	_	Type de contact de sortie ⁽¹⁾ • 0 = NO (normalement ouvert, réglage d'usine) • 1 = NF (normalement fermé)
0x3872	14451	R	_	INT16U	0–2	_	Indique l'état activé/désactivé de la sortie TOR lorsqu'une condition de repli se produit • 0 = Désactivé (réglage d'usine) • 1 = Activé • 2 = Bloqué
0x3873- 0x3874	14452– 14453	R	-	INT32U	1-4294967294	-	Valeur de seuil du compteur de sortie ⁽¹⁾ Réglage d'usine = 5 000
0x3875	14454	R-WC	-	INT16U	0–2	_	Commande simple pour sortie ⁽¹⁾ • 0 = Aucune commande • 1 = Désactivé • 2 = Activé Valide si les commandes simples sont activées ⁽²⁾ .
0x3876- 0x3884	14455– 14469	-	-	-	-	-	Réservé

⁽¹⁾ Valeur définie à l'aide du logiciel EcoStruxure Power Commission.

⁽²⁾ Les commandes simples sont activées par un réglage d'usine. Les commandes simples peuvent être désactivées à l'aide des commandes d'activation/de désactivation.

Paramètres du matériel

Liste des adresses et des registres

Le tableau suivant décrit les paramètres du matériel et les registres concernant le module IO.

Module IO	Adresses	Registres
IO 1	0x38FD-0x3902	14590–14595
10 2	0x44B5–0x44BA	17590–17595

Paramètres du matériel pour IO 1

L'ordre et la description des registres de paramètres du matériel pour $IO\ 2$ sont identiques à ceux de $IO\ 1$.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x38FD	14590	R	-	INT16U	1–9	Position actuelle du commutateur rotatif de l'application : • 1 = position 1 • 2 = position 2 • 3 = position 3 • 4 = position 4 • 5 = position 5 • 6 = position 6 • 7 = position 7 • 8 = position 8 • 9 = position 9
0x38FE	14591	R	-	INT16U	0–1	Position du cadenas de configuration à distance : • 0 = déverrouiller • 1 = verrouiller
0x38FF	14592	R	-	INT16U	0–1	Position du micro-commutateur SW1 : • 0 = IO 1 • 1 = IO 2
0x3900	14593	_	_	_	_	Réservé
0x3901	14594	R	-	INT16U	1–9	Dernière application validée définie par le bouton de test situé sur la face avant du module IO : • 1 = position 1 • 2 = position 2 • 3 = position 3 • 4 = position 4 • 5 = position 5 • 6 = position 6 • 7 = position 7 • 8 = position 8 • 9 = position 9

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x3902	14595	R	-	INT16U	1–9	Dernière application validée par le logiciel EcoStruxure Power Commission :
						• 1 = position 1
						• 2 = position 2
						• 3 = position 3
						• 4 = position 4
						• 5 = position 5
						• 6 = position 6
						• 7 = position 7
						• 8 = position 8
						• 9 = position 9
0x3903-	14596-	-	-	-	_	Réservé
0x3904	14597					

Etat des entrées et des sorties numériques

Liste des adresses et des registres

Le tableau suivant décrit les adresses d'état des entrées et sorties numériques et les registres concernant le module IO.

Module IO	Adresses	Registres		
IO 1	0x3905-0x3908	14598–14601		
10 2	0x44BD-0x44C0	17598–17601		

Registres d'état des entrées et des sorties numériques pour IO 1

L'ordre et la description des registres d'état des entrées et des sorties numériques de IO 2 sont identiques à ceux de IO 1.

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
0x3905	14598	R	_	INT16U	-	-	Validité de chaque bit du registre 14599 : • 0 = Non valide • 1 = Valide
0x3906	14599	R	-	INT16U	_	_	Registre d'état de l'entrée numérique : • Etat de l'entrée = 0 lorsque l'entrée est inactive • Etat de l'entrée = 1 lorsque l'entrée est active
						0	Etat I1
						1	Etat I2
						2	Etat I3
						3	Etat I4
						4	Etat I5
						5	Etat I6
						6–15	Réservé
0x3907	14600	R	-	INT16U	-	-	Validité de chaque bit du registre 14601 : • 0 = Non valide • 1 = Valide
0x3908	14601	R-WC	-	INT16U	_	-	Registre d'état de la sortie numérique : • Etat de la sortie = 0 lorsque la sortie est inactive • Etat de la sortie = 1 lorsque la sortie est active
						0	Etat O1
						1	Etat O2
						2	Etat O3
						3–15	Réservé

Identification du module IO

Introduction

L'ordre et la description des registres d'identification du module IO pour IO 2 sont identiques à ceux de IO 1.

Liste des adresses et des registres

Le tableau suivant décrit les registres et les adresses d'identification du module IO.

Module IO	Adresses	Registres
IO 1	0x392F-0x3982	14640–14723
10 2	0x44E7-0x453A	17640–17723

Identification de l'IMU

L'identification de l'IMU peut être configurée à l'aide du logiciel EcoStruxure Power Commission. Lorsqu'ils ne sont pas configurés, les registres d'identification renvoient la valeur 0 (0x0000).

L'afficheur FDM121 affiche les 14 premiers caractères du nom de l'unité fonctionnelle intelligente (IMU).

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x3931- 0x3948	14642– 14665	R	-	OCTET STRING	_	Nom de l'IMU = jusqu'à 45 caractères ASCII se terminant par le caractère NULL 0x00
0x3949– 0x3960	14666– 14689	R	_	OCTET STRING	_	Emplacement de l'IMU = jusqu'à 45 caractères ASCII se terminant par le caractère NULL 0x00

Version matérielle du module IO

La révision du matériel se présente sous la forme d'une chaîne ASCII au format XXX.YYY.ZZZ, avec :

- XXX = version majeure (000–127)
- YYY = version mineure (000–255)
- ZZZ = numéro de version (000–255)

Le caractère NULL termine le numéro de version.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x3961- 0x3966	14690– 14695	R	_	OCTET STRING	_	Révision du matériel

Version logicielle du module IO

La révision du firmware se présente sous la forme d'une chaîne ASCII au format XXX.YYY.ZZZ, avec :

- XXX = version majeure (000–127)
- YYY = version mineure (000–255)
- ZZZ = numéro de révision (000–255)

Le caractère NULL termine le numéro de révision.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x3967- 0x396C	14696– 14701	R	_	OCTET STRING	_	Révision du firmware

Date et heure actuelles

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x396D- 0x3970	14702– 14705	R	_	DATETIME	_	Date et heure actuelles du module IO au format DATETIME, configurées à l'aide du logiciel EcoStruxure Power Commission

Numéro de série

Le numéro de série du module IO est composé de 11 caractères alphanumériques maximum au format suivant : PPYYWWDnnnn.

- PP = code de l'usine
- YY = année de fabrication (05–99)
- WW = semaine de fabrication (01–53)
- D = jour de fabrication (1–7)
- nnnn = numéro de production de l'appareil le jour de sa fabrication (0001– 9999)

Une requête de lecture de 6 registres est nécessaire pour lire le numéro de série du module IO.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x3971- 0x397A	14706-14715	R	_	OCTET STRING	-	Numéro de série
0x3971	14706	R	_	OCTET STRING	-	'PP'
0x3972	14707	R	_	OCTET STRING	'05'–'99'	'YY'
0x3973	14708	R	_	OCTET STRING	'01'–'53'	'WW'
0x3974	14709	R	_	OCTET STRING	'10'–'79'	'Dn'
0x3975	14710	R	_	OCTET STRING	'00'–'99'	'nn'
0x3976	14711	R	_	OCTET STRING	'0'–'9'	'n' (le caractère NULL termine le numéro de série)

Date et heure de fabrication

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x397B- 0x397E	14716– 14719	R	_	DATETIME	_	Date et heure de fabrication

Identification du produit

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x392F	14640	R	_	INT16U	15150	Identification du produit = 15150 pour le module IO
0x3930	14641	-	_	_	-	Réservé
0x397F- 0x3982	14720– 14723	R	_	OCTET STRING	_	Code de produit = 'LV434063'
0x3D1C- 0x3D3B	15645— 15676	R-WC	_	OCTET STRING	_	Nom de l'application utilisateur
0x3D3C- 0x3D45	15677– 15686	R	_	OCTET STRING	_	Nom du fournisseur = 'Schneider Electric'
0x3D46- 0x3D4D	15687— 15694	R	_	OCTET STRING	-	Gamme de produits: 'Enerlinx'
0x3D4E- 0x3D5D	15695— 15710	R	_	OCTET STRING	_	Famille d'appareils : "appareil IO"
0x3D5E- 0x3D65	15711– 15718	R	_	OCTET STRING	_	Modèle de produit

Etat des alarmes

Liste des adresses et des registres

Le tableau suivant décrit les adresses d'état des alarmes et les registres concernant le module IO.

Module IO	Adresses	Registres		
IO 1	0x3989-0x39A6	14730–14759		
IO 2	0x4541-0x455E	17730–17759		

Etat de l'alarme générique pour IO 1

L'ordre et la description des registres d'état des alarmes génériques IO 2 sont identiques à ceux de IO 1.

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
0x3989	14730	R	-	INT16U	-	-	Validité de chaque bit du registre 14731 : • 0 = Non valide • 1 = Valide
0x398A	14731	R	-	INT16U	_	_	Registre de format de l'historique du module IO
						0	Format ULP
						1	Format TI086
						2–15	Réservé
0x398B	14732	R	-	INT16U	_	_	Validité de chaque bit du registre 14733 : • 0 = Non valide • 1 = Valide
0x398C 14733	14733	R	-	INT16U	_	_	Type de commande du module IO
							Réglage d'usine = 3, les deux mécanismes de commande d'écriture sont activés.
						0	1 = commandes complexes
						1	1 = Commandes simples
							Les commandes simples peuvent être désactivées par l'envoi d'une commande.
						2–15	Réservé
0x398D- 0x3992	14734– 14739	-	-	_	-	_	Réservé
0x3993	14740	R	-	INT16U	-	-	Validité de chaque bit du registre 14741 : • 0 = Non valide • 1 = Valide
0x3994	14741	R	-	INT16U	_	_	Registre d'état d'alarme générique 1 du module IO.
						0	Module IO en mode STOP : le module IO ne fonctionne pas et doit être remplacé.
						1	Module IO en mode ERROR : le module IO fonctionne en mode dégradé.
						2	Dépassement du seuil au niveau du compteur I1
						3	Dépassement du seuil au niveau du compteur l2
						4	Dépassement du seuil sur le compteur l3
						5	Dépassement du seuil sur le compteur l4
						6	Dépassement du seuil sur le compteur I5

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
						7	Dépassement du seuil sur le compteur l6
						8	Dépassement du seuil au niveau du compteur O1
						9	Dépassement du seuil sur le compteur O2
						10	Dépassement du seuil sur le compteur O3
						11	Dépassement du seuil 1 de température du tableau
						12	Dépassement du seuil 2 de température du tableau
						13	Dépassement du seuil 3 de température du tableau
						14–15	Réservé
0x3995	14742	R	-	INT16U	-	-	Validité de chaque bit du registre 14743 : • 0 = Non valide • 1 = Valide
0x3996	14743	R	_	INT16U	_	_	Registre d'état d'alarmes génériques 2 du module IO.
						0	Alarme 1 d'entrée définie par l'utilisateur
						1	Alarme 2 d'entrée définie par l'utilisateur
						2	Alarme 3 d'entrée définie par l'utilisateur
						3	Alarme 4 d'entrée définie par l'utilisateur
						4	Alarme 5 d'entrée définie par l'utilisateur
						5	Alarme 6 d'entrée définie par l'utilisateur
						6–15	Réservé

Alarmes de gestion de châssis et de rack pour IO 1

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
0x3997	14744	R	_	INT16U	_	-	Validité de chaque bit du registre 14745 : • 0 = Non valide • 1 = Valide
0x3998	14745	R	-	INT16U	_	_	Registre des alarmes de gestion de châssis
						0	Ecart de position du châssis
						1	Le délai de débrochage du disjoncteur du châssis est échu.
						2	Le châssis a atteint le nombre maximum d'opérations
						3	La durée de vie restante du châssis est inférieure au seuil d'alarme
						4	Une nouvelle unité de contrôle MicroLogic a été détectée
						5–7	Réservé
						8	Ecart de position des racks
						9–15	Réservé

Alarmes de moteur pour IO 1

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
0x3999	14746	R	_	INT16U	_	_	Validité de chaque bit du registre 14747 : • 0 = Non valide • 1 = Valide
0x399A	14747	R	_	INT16U	_	_	Alarmes de moteur IO
						0–15	Réservés

Alarmes d'applications diverses pour IO 1

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description	
0x399B	14748	R	_	INT16U	-	-	Validité de chaque bit du registre 14749 : • 0 = Non valide • 1 = Valide	
0x399C	14749	R	-	INT16U	_	-	Registre des autres alarmes d'applications	
						0	Le contact auxiliaire du contacteur de charge 1 n'est pas fermé.	
						1	Le contact auxiliaire du contacteur de charge 1 n'est pas ouvert.	
						2	Divergence avec la commande de désactivation ERMS et la commande d'activation ERMS	
						3	Réservé	
						4–15	Réservé	
0x399D	14750	R	_	INT16U	_	_	Validité de chaque bit du registre 14751 : • 0 = Non valide • 1 = Valide	
0x399E	14751	R	-	INT16U	_	-	Registre des alarmes d'entrée prédéfinies	
						0	Contact de signal de déclenchement sur fuite à la terre (SDV)	
						1	Contact de présence de tension de contrôle	
						2	Contact d'état de protection contre les surtensions	
						3	Contact de panne dû à la surtension	
						4	Contact de signalisation d'activation/désactivation d'interrupteur-sectionneur (OF)	
						5	Contact d'indication de fusion de fusible	
						6	Arrêt d'urgence	
						7	Contact de température du tableau	
						8	Contact de ventilation du tableau	
						9	Contact de la porte du tableau	
						10–15	Réservé	
0x399F	14752	R	-	INT16U	_	_	Validité de chaque bit du registre 14753 : • 0 = Non valide • 1 = Valide	
0x39A0	14753	R	-	INT16U	-	_	Registre des alarmes de discordance de module IO	
						0	Conflit de matériel critique	
						1	Conflit de micrologiciel critique	
						2	Conflit de matériel non critique	

Adresse	Registre	RW	Unité	Туре	Plage	Bit	Description
						3	Conflit de micrologiciel non critique
						4–15	Réservé
0x39A1- 0x39A6	14754– 14759	_	_	-	-	-	Réservé

Applications

Etat de l'application IO

Adresse	Registre	L/E	Unité	Туре	Plage	Bit	Description
0x3927	14632	L	-	INT16U	_	0	Application de châssis activée ou désactivée : • 0 = désactivée • 1 = activée
						1-15	Réservé
0x3928	14633	L	-	INT16U	_	_	Validité de chaque bit du registre 14632 : • 0 = Non valide • 1 = Valide

Gestion de châssis

Le tableau décrit les registres relatifs à l'application de gestion de châssis exécutée par IO 1 (application prédéfinie ou définie par l'utilisateur).

Les registres 18300–18329 sont liés à l'application de gestion de châssis exécutée par IO 2 (application prédéfinie ou définie par l'utilisateur).

Adresse	Registre	L/E	Unité	Туре	Plage	Bit	Description
0x3BC3	15300	R-RC	_	INT16U	-	-	Validité de chaque bit du registre 15301 : • 0 = Non valide • 1 = Valide
0x3BC4	15301	R-RC	-	INT16U	-	-	Etat du châssis
						0-7	Réservé
						8	Equipement en position débroché (CD)
						9	Equipement en position embroché (CE)
						10	Equipement en position de test (CT)
						11-15	Réservé
0x3BC5-	15302- 15303	R-RC-	-	INT32U	0-65534	_	Compteur de position châssis embroché
0x3BC6	15303	WC					Ce compteur s'incrémente pour chaque front montant correspondant à la position châssis embroché.
0x3BC7-	15304-	R-RC-	-	INT32U	0-65534	_	Compteur de position châssis débroché
0x3BC8	15305	WC					Ce compteur s'incrémente pour chaque front montant correspondant à la position châssis débroché.
0x3BC9-	15306-	R-RC-	_	INT32U	0-65534	_	Compteur de position châssis test
0x3BCA	15307	WC					Ce compteur s'incrémente pour chaque front montant correspondant à la position châssis test.
0x3BCB- 0x3BCE	15308- 15311	R-RC	-	DATETIME	-	-	Horodatage de la dernière modification de la position châssis embroché
0x3BCF- 0x3BD2	15312- 15315	R-RC	-	DATETIME	-	-	Horodatage de la dernière modification de la position châssis débroché
0x3BD3- 0x3BD6	15316- 15319	R-RC	-	DATETIME	-	_	Horodatage de la dernière modification de la position châssis test
0x3BD7- 0x3BD8	15320- 15321	R-WC	S	INT32U	-	-	Temps de fonctionnement depuis la dernière maintenance de graissage
0x3BD9- 0x3BDA	15322- 15323	R-WC	s	INT32U	-	_	Temps de fonctionnement depuis le dernier changement en position embroché

Adresse	Registre	L/E	Unité	Туре	Plage	Bit	Description
0x3BDB	15324	L	_	INT16U	0-65534	-	Compteur de regraissage de contact du châssis
0x3BDC- 0x3BE0	15325- 15329	-	_	_	_	-	Réservé

Gestion de racks

Le tableau décrit les registres relatifs à l'application de gestion de racks définie par l'utilisateur et exécutée par IO 1.

Les registres 18330-18359 sont liés à l'application de gestion de racks définie par l'utilisateur qui est exécutée par IO 2.

Adresse	Registre	L/E	Unité	Туре	Plage	Bit	Description	
0x3BE1	15330	L	-	INT16U	-	-	Validité de chaque bit du registre 15331 :	
							0 = Non valide	
							1 = Valide	
0x3BE2	15331	L	-	INT16U	_	_	Etat du rack	
						0-7	Réservé	
						8	Rack en position débroché	
						9	Rack en position embroché	
						10	Rack en position de test	
						11-15	Réservé	
0x3BE3- 0x3BE4	15332- 15333	L	_	INT32U	_	_	Compteur de position rack embroché.	
UX3BE4	15333						Ce compteur s'incrémente pour chaque front montant correspondant à la position connectée du rack.	
0x3BE5-	15334-	L	-	INT32U	-	-	Compteur de position rack débroché.	
0x3BE6	15335						Ce compteur s'incrémente pour chaque front montant correspondant à la position déconnectée du rack.	
0x3BE7- 0x3BE8	15336- 15337	L	-	INT32U	_	_	Compteur de position rack test.	
UX3BEO	15557						Ce compteur s'incrémente pour chaque front montant correspondant à la position de test du rack.	
0x3BE9- 0x3BEC	15338- 15341	L	-	DATETIME	-	-	Horodatage de la dernière modification de la position connectée du rack.	
0x3BED- 0x3BF0	15342- 15345	L	-	DATETIME	-	_	Horodatage de la dernière modification de la position déconnectée du rack.	
0x3BF1- 0x3BF4	15346- 15349	L	_	DATETIME	_	_	Horodatage de la dernière modification de la position de test du rack.	
0x3BF5- 0x3BFE	15350- 15359	-	-	-	_	-	Réservé	

Commande d'éclairage

Le tableau décrit les registres relatifs à l'application prédéfinie de commande d'éclairage exécutée par IO 1.

Les registres 18400–18409 sont liés à l'application prédéfinie de commande d'éclairage exécutée par IO 2.

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x3C27	15400	L	-	INT16U	0-1	Intégrité du registre 15401 : • 0 = Non valide • 1 = Valide (l'application est configurée et en cours d'exécution)
0x3C28	15401	L	_	INT16U	0-1	Etat d'éclairage : • 0 = réinitialisé/désactivé • 1 = configuré/activé
0x3C29- 0x3C2A	15402- 15403	L	s	INT32U	0-54000	Temps restant en mode Activé ou Désactivé (en fonction de l'état de l'éclairage)
0x3C2B-	15404	L	-	INT16U	0-2	Commande simple d'éclairage(1): • 0 = Aucune commande • 1 = Eclairage désactivé • 2 = Eclairage activé
0x3C2C- 0x3C30	15405- 15409	-	_	_	-	Réservé

⁽¹⁾ Les commandes simples sont activées par un réglage d'usine. Les commandes simples peuvent être désactivées à l'aide des commandes simples d'activation/de désactivation.

Contrôle de charge

Le tableau décrit les registres relatifs à l'application prédéfinie de contrôle de charge exécutée par IO 1.

Les registres 18410-18419 sont liés à l'application prédéfinie de contrôle de charge qui est exécutée par IO 2.

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x3C31	15410	L	_	INT16U	0-1	Intégrité du registre 15411 : • 0 = Non valide • 1 = Valide (l'application est configurée et en cours d'exécution)
0x3C32	15411	L	-	INT16U	0-1	Etat de la charge : • 0 = réinitialisé/désactivé • 1 = configuré/activé
0x3C33- 0x3C34	15412- 15413	L	s	INT32U	0-54000	Temps restant en mode Activé ou Désactivé (en fonction de l'état de la charge)
0x3C35	15414	L	-	INT16U	0-2	Commande simple de charge ⁽¹⁾ : • 0 = Aucune commande • 1 = Charge inactive • 2 = Charge active
0x3C36- 0x3EEC	15415- 16109	_	-	-	-	Réservé

⁽¹⁾ Les commandes simples sont activées par un réglage d'usine. Les commandes simples peuvent être désactivées à l'aide des commandes simples d'activation/de désactivation.

Événements du module IO

Contenu de ce chapitre

Historique des événements	220
Evénements et alarmes du module IO	222

Historique des événements

Description générale

Les registres d'historique des événements décrivent les 100 derniers événements produits. Le format de l'historique des événements correspond à une série de 100 enregistrements. Chaque enregistrement se compose de 5 registres décrivant un événement.

Une requête de lecture de 5 x (n) registres est nécessaire pour lire les n derniers événements, où 5 est le nombre de registres pour chaque enregistrement d'événement.

Par exemple, une requête de lecture de 5 x 3 = 15 registres est nécessaire pour lire les 3 derniers enregistrements d'événement de l'historique des événements :

- Les 5 premiers registres décrivent le premier enregistrement d'événement (événement le plus récent).
- Les 5 registres qui suivent décrivent le deuxième enregistrement d'événement.
- Les 5 derniers registres décrivent le troisième enregistrement d'événement.

Il existe 2 historiques des événements, 1 par IO module.

IO Module	Adresse	Registre	Description
IO 1	0x39A7-0x39AB	14760-14764	Enregistrement d'événement 1 (le plus récent)
	0x39AC-0x39B0	14765-14769	Enregistrement d'événement 2
	0x39A7+5x(n-1)-0x39AB+5x(n-1)	14760+5x(n-1)-14764+5x(n-1)	Enregistrement d'événement n
	0x3B96-0x3B9A	15255-15259	Enregistrement d'événement 100
IO 2	0x455F-0x4563	17760-17764	Enregistrement d'événement 1 (le plus récent)
	0x4564-0x4568	17765-17769	Enregistrement d'événement 2
	0x455F+5x(n-1)-0x4563+5x(n-1)	17760+5x(n-1)-17764+5x(n-1)	Enregistrement d'événement n
	0x474E-0x4752	18255-18259	Enregistrement d'événement 100

Enregistrement d'événement

Une requête de lecture de bloc de 5 registres est nécessaire pour lire un enregistrement d'événement. L'ordre et la description des registres des enregistrements d'événement de IO 2 sont les mêmes que pour IO 1 :

Enregistreme	Enregistrement d'événement 1 (le plus récent)						
Registre	Adresse	L/E	Туре	Description			
0x39A7	14760	L	INT16U	Code d'événement des modules IO 1 et IO 2, page 222			
0x39A8- 0x39AA	14761-14763	L	ULP DATE	Date and time of the event, page 71			
0x39AB	14764	L	INT16U	Type d'événement			
				MSB = 0 (réservé)			
				Apparition de l'événement : LSB = 1			
				Achèvement de l'événement : LSB = 2			

Définition des alarmes

Les alarmes sont des événements spécifiques qui doivent être réinitialisés.

Le mode de réinitialisation d'une alarme peut être :

- automatique : l'alarme est réinitialisée automatiquement lorsqu'elle n'est plus active.
- manuel : l'alarme est réinitialisée manuellement à l'aide du bouton-poussoir de test/acquittement situé sur la face avant du module IO et lorsque l'alarme n'est plus active.
- distant : l'alarme est réinitialisée à distance à l'aide de la commande Reset (Réinitialiser) via l'interface de communication et lorsque l'alarme n'est plus active.

Chaque alarme a un niveau de priorité qui gère l'affichage de l'alarme sur l'afficheur FDM121 :

- Aucune priorité = N/A (non affecté)
- priorité basse = 1. Aucune alarme n'est affichée sur l'afficheur FDM121.
- priorité moyenne = 2. Le voyant de l'afficheur FDM121 est allumé en continu.
- priorité haute = 3. Le voyant de l'afficheur FDM121 clignote et une fenêtre contextuelle indique que l'alarme s'est déclenchée.

Evénements et alarmes du module IO

Evénements et alarmes du module IO 1

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
1537 (0x0601)	Généralités	Réinitialisation IO1 sur watchdog	Evéne- ment	Moyenne	-
1538 (0x0602)	Généralités	Réinitialisation IO1 sur les réglages d'usine	Evéne- ment	Moyenne	-
1539 (0x0603)	Généralités	Echec IO1 (mode STOP)	Alarme	Haute	Manuelle ou distante
1540 (0x0604)	Généralités	Echec IO1 (mode ERROR)	Alarme	Moyenne	Manuelle ou distante
1541 (0x0605)	Généralités	Modification de la position du commutateur rotatif fonctionnel IO1	Evéne- ment	Moyenne	-
1542 (0x0606)	Généralités	Configuration de la modification de la position du commutateur rotatif de verrouillage IO1	Evéne- ment	Moyenne	-
1543 (0x0607)	Généralités	Modification de la position du micro- commutateur de sélection d'adresse source IO1	Evéne- ment	Moyenne	_
1552 (0x0610)	Généralités	Front montant O1 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1553 (0x0611)	Généralités	Front montant O2 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	_
1554 (0x0612)	Généralités	Front montant O3 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1555 (0x0613)	Généralités	Front montant I1 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1556 (0x0614)	Généralités	Front montant I2 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1557 (0x0615)	Généralités	Front montant I3 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1558 (0x0616)	Généralités	Front montant I4 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	_
1559 (0x0617)	Généralités	Front montant I5 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1560 (0x0618)	Généralités	Front montant I6 IO1 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1561 (0x0619)	Généralités	Dépassement du seuil IO1 sur le compteur I1	Alarme	Moyenne	Manuelle ou distante
1562 (0x061A)	Généralités	Dépassement du seuil IO1 sur le compteur I2	Alarme	Moyenne	Manuelle ou distante
1563 (0x061B)	Généralités	Dépassement du seuil IO1 sur le compteur l3	Alarme	Moyenne	Manuelle ou distante
1564 (0x061C)	Généralités	Dépassement du seuil IO1 sur le compteur l4	Alarme	Moyenne	Manuelle ou distante
1565 (061x0D)	Généralités	Dépassement du seuil IO1 sur le compteur I5	Alarme	Moyenne	Manuelle ou distante
1566 (0x061E)	Généralités	Dépassement du seuil IO1 sur le compteur l6	Alarme	Moyenne	Manuelle ou distante
1567 (0x061F)	Généralités	Dépassement du seuil IO1 sur le compteur O1	Alarme	Moyenne	Manuelle ou distante
1568 (0x0620)	Généralités	Dépassement du seuil IO1 sur le compteur O2	Alarme	Moyenne	Manuelle ou distante
1569 (0x0621)	Généralités	Dépassement du seuil IO1 sur le compteur O3	Alarme	Moyenne	Manuelle ou distante

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
1570 (0x0622)	Généralités	Changement I1 IO1 non forcé/forcé	Evéne- ment	Faible	-
1571 (0x0623)	Généralités	Changement I2 IO1 non forcé/forcé	Evéne- ment	Faible	-
1572 (0x0624)	Généralités	Changement I3 IO1 non forcé/forcé	Evéne- ment	Faible	-
1573 (0x0625)	Généralités	Changement I4 IO1 non forcé/forcé	Evéne- ment	Faible	-
1574 (0x0626)	Généralités	Changement I5 IO1 non forcé/forcé	Evéne- ment	Faible	-
1575 (0x0627)	Généralités	Changement I6 IO1 non forcé/forcé	Evéne- ment	Faible	-
1576 (0x0628)	Généralités	Changement O1 IO1 non forcé/forcé	Evéne- ment	Faible	-
1577 (0x0629)	Généralités	Changement O2 IO1 non forcé/forcé	Evéne- ment	Faible	_
1578 (0x062A)	Généralités	Changement O3 IO1 non forcé/forcé	Evéne- ment	Faible	-
1579 (0x062B)	Acquisition d'entrée définie par l'utilisateur	Entrée 1 IO1 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1580 (0x062C)	Acquisition d'entrée définie par l'utilisateur	Entrée 2 IO1 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1581 (062x0D)	Acquisition d'entrée définie par l'utilisateur	Entrée 3 IO1 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1582 (0x062E)	Acquisition d'entrée définie par l'utilisateur	Entrée 4 IO1 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1583 (0x062F)	Acquisition d'entrée définie par l'utilisateur	Entrée 5 IO1 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1584 (0x0630)	Acquisition d'entrée définie par l'utilisateur	Entrée 6 IO1 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1585 (0x0631)	Système de refroidissement	Dépassement du seuil de température 1 du tableau de distribution IO1	Alarme	Faible	Auto
1586 (0x0632)	Système de refroidissement	Dépassement du seuil de température 2 du tableau de distribution IO1	Alarme	Moyenne	Manuelle ou distante
1587 (0x0633)	Système de refroidissement	Dépassement du seuil de température 3 du tableau de distribution IO1	Alarme	Haute	Manuelle ou distante

NOTE: La priorité de sortie d'alarme est fixée dans le micrologiciel du module IO. La valeur est Basse, lorsque celle-ci est disponible.

Evénements et alarmes du module IO 2

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
1793 (0x0701)	Généralités	Réinitialisation du watchdog IO2	Evéne- ment	Moyenne	-
1794 (0x070- 2)	Généralités	Réinitialisation IO2 sur les réglages d'usine	Evéne- ment	Moyenne	-
1795 (0x0703)	Généralités	Défaillance du module IO2 (mode STOP)	Alarme	Haute	Manuelle ou distante
1796 (0x0704)	Généralités	Défaillance du module IO2 (mode ERROR)	Alarme	Moyenne	Manuelle ou distante
1797 (0x0705)	Généralités	Modification de la position du commutateur rotatif fonctionnel IO2	Evéne- ment	Moyenne	-

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
1798 (0x0706)	Généralités	Configuration de la modification de la position du commutateur rotatif de verrouillage IO2	Evéne- ment	Moyenne	-
1799 (0x0707)	Généralités	Modification de la position du micro- commutateur de sélection d'adresse source IO2	Evéne- ment	_	-
1808 (0x0710)	Généralités	Front montant O1 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1809 (0x0711)	Généralités	Front montant O2 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1810 (0x0712)	Généralités	Front montant O3 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1811 (0x0713)	Généralités	Front montant I1 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1812 (0x0714)	Généralités	Front montant I2 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1813 (0x0715)	Généralités	Front montant I3 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1814 (0x0716)	Généralités	Front montant I4 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1815 (0x0717)	Généralités	Front montant I5 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1816 (0x0718)	Généralités	Front montant l6 IO2 (changement d'état désactivé/activé)	Evéne- ment	Faible	-
1817 (0x0719)	Généralités	Dépassement du seuil IO2 sur le compteur I1	Alarme	Moyenne	Manuelle ou distante
1818 (0x071A)	Généralités	Dépassement du seuil IO2 sur le compteur I2	Alarme	Moyenne	Manuelle ou distante
1819 (0x071B)	Généralités	Dépassement du seuil IO2 sur le compteur I3	Alarme	Moyenne	Manuelle ou distante
1820 (0x071C)	Généralités	Dépassement du seuil IO2 sur le compteur I4	Alarme	Moyenne	Manuelle ou distante
1821 (071x0D)	Généralités	Dépassement du seuil IO2 sur le compteur I5	Alarme	Moyenne	Manuelle ou distante
1822 (0x071E)	Généralités	Dépassement du seuil IO2 sur le compteur I6	Alarme	Moyenne	Manuelle ou distante
1823 (0x071F)	Généralités	Dépassement du seuil IO2 sur le compteur O1	Alarme	Moyenne	Manuelle ou distante
1824 (0x0720)	Généralités	Dépassement du seuil IO2 sur le compteur O2	Alarme	Moyenne	Manuelle ou distante
1825 (0x0721)	Généralités	Dépassement du seuil IO2 sur le compteur O3	Alarme	Moyenne	Manuelle ou distante
1826 (0x0722)	Généralités	Changement I1 IO2 non forcé/forcé	Evéne- ment	Faible	-
1827 (0x0723)	Généralités	Changement I2 IO2 non forcé/forcé	Evéne- ment	Faible	-
1828 (0x0724)	Généralités	Changement I3 IO2 non forcé/forcé	Evéne- ment	Faible	-
1829 (0x0725)	Généralités	Changement I4 IO2 non forcé/forcé	Evéne- ment	Faible	-
1830 (0x0726)	Généralités	Changement I5 IO2 non forcé/forcé	Evéne- ment	Faible	-
1831 (0x0727)	Généralités	Changement I6 IO2 non forcé/forcé	Evéne- ment	Faible	-
1832 (0x0728)	Généralités	Changement O1 IO2 non forcé/forcé	Evéne- ment	Faible	-

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
1833 (0x0729)	Généralités	Changement O2 IO2 non forcé/forcé	Evéne- ment	Faible	-
1834 (0x072A)	Généralités	Changement O3 IO2 non forcé/forcé	Evéne- ment	Faible	-
1835 (0x072B)	Acquisition d'entrée définie par l'utilisateur	Entrée 1 IO2 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1836 (0x072C)	Acquisition d'entrée définie par l'utilisateur	Entrée 2 IO2 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1837 (072x0D)	Acquisition d'entrée définie par l'utilisateur	Entrée 3 IO2 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1838 (0x072E)	Acquisition d'entrée définie par l'utilisateur	Entrée 4 IO2 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1839 (0x072F)	Acquisition d'entrée définie par l'utilisateur	Entrée 5 IO2 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1840 (0x0730	Acquisition d'entrée définie par l'utilisateur	Entrée 6 IO2 définie par l'utilisateur	Alarme	Moyenne	Manuelle ou distante
1841 (0x0731)	Système de refroidissement	Dépassement du seuil de température 1 du tableau de distribution IO2	Alarme	Faible	Auto
1842 (0x0732)	Système de refroidissement	Dépassement du seuil de température 2 du tableau de distribution IO2	Alarme	Moyenne	Manuelle ou distante
1843 (0x0733)	Système de refroidissement	Dépassement du seuil de température 3 du tableau de distribution IO2	Alarme	Haute	Manuelle ou distante

NOTE: La priorité de sortie d'alarme est fixée dans le micrologiciel de l'IO Module. La valeur est Basse, lorsque celle-ci est disponible.

Evénements et alarmes IO 1 et IO 2

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
2304 (0x0900)	Gestion de châssis	Écart de position du châssis	Alarme	Moyenne	Manuelle ou distante
2305 (0x0901)	Gestion de châssis	Changement d'état du contact châssis embroché	Alarme	Faible	Manuelle ou distante
2306 (0x0902)	Gestion de châssis	Changement d'état du contact châssis débroché	Alarme	Faible	Manuelle ou distante
2307 (0x0903)	Gestion de châssis	Changement d'état du contact châssis test	Alarme	Faible	Manuelle ou distante
2308 (0x0904)	Gestion de châssis	Retirer l'appareil du châssis, puis le remettre	Alarme	Moyenne	Manuelle ou distante
2309 (0x0905)	Gestion de châssis	Le châssis a atteint son nombre maximum d'opérations	Alarme	Haute	Manuelle ou distante
2310 (0x0906)	Gestion de châssis	La durée de vie restante du châssis est inférieure au seuil d'alarme	Alarme	Moyenne	Manuelle ou distante
2311 (0x0907)	Gestion de châssis	Une nouvelle unité de contrôle MicroLogic a été détectée.	Alarme	Haute	Manuelle ou distante
2432 (0x0980	Gestion de racks	Ecart de position des racks	Alarme	Moyenne	Manuelle ou distante
2560 (0x0A00)	Contrôle de charge	Le contact auxiliaire du contacteur de charge 1 n'est pas fermé.	Alarme	Moyenne	Manuelle ou distante
2561 (0x0A01)	Contrôle de charge	Le contact auxiliaire du contacteur de charge 1 n'est pas fermé.	Alarme	Moyenne	Manuelle ou distante
2816 (0x0B00)	Acquisition d'entrée prédéfinie	Contact de signal de déclenchement sur fuite à la terre (SDV)	Alarme	Moyenne	Manuelle ou distante

Code	Application	Description	Туре	Priorité	Mode de réinitialisation
2817 (0x0B01)	Acquisition d'entrée prédéfinie	Contact de présence de tension de contrôle	Alarme	Moyenne	Manuelle ou distante
2818 (0x0B02)	Acquisition d'entrée prédéfinie	Contact d'état de protection contre les surtensions	Alarme	Moyenne	Manuelle ou distante
2819 (0x0B03)	Acquisition d'entrée prédéfinie	Contact de panne dû à la surtension	Alarme	Moyenne	Manuelle ou distante
2820 (0x0B04)	Acquisition d'entrée prédéfinie	Contact de signalisation d'activation/ désactivation d'interrupteur-sectionneur (OF)	Alarme	Moyenne	Manuelle ou distante
2821 (0x0B05)	Acquisition d'entrée prédéfinie	Contact d'indication de fusion de fusible	Alarme	Moyenne	Manuelle ou distante
2822 (0x0B06)	Acquisition d'entrée prédéfinie	Arrêt d'urgence		Haute	Manuelle ou distante
2823 (0x0B07)	Système de refroidissement	Contact de température du tableau	Alarme	Moyenne	Manuelle ou distante
2824 (0x0B08)	Système de refroidissement	Contact de ventilation du tableau	Alarme	Moyenne	Manuelle ou distante
2825 (0x0B09)	Système de refroidissement	Contact de la porte du tableau	Alarme	Moyenne	Manuelle ou distante
3072 (0x0C00)	Paramètres de protection	Différence avec la commande de désactivation ERMS et la commande d'activation ERMS (ComPacT NS uniquement)	Alarme	Haute	Manuelle ou distante
3328 (0x0D00)	Généralités	Incompatibilité critique entre les modules matériels	Alarme	Haute	Auto
3329 (0x0D01)	Généralités	Incompatibilité critique entre les modules de firmware	Alarme	Haute	Auto
3330 (0x0D02)	Généralités	Incompatibilité non critique entre les modules matériels	Alarme	Moyenne	Auto
3331 (0x0D03)	Généralités	Incompatibilité non critique entre les modules de firmware	Alarme	Moyenne	Auto

Commandes du module IO

Contenu de ce chapitre

Liste des commandes IO Module	228
Commandes génériques	229
Commandes d'application	

Liste des commandes IO Module

Liste des commandes

Les commandes sont de deux types :

- les commandes génériques fonctionnant indépendamment de l'application sélectionnée.
- les commandes d'applications dédiées à une application. Une commande est valide uniquement si l'application associée est configurée.

Le tableau ci-après répertorie les commandes du module IO et indique les applications, les codes de commande et les profils utilisateur correspondants. Suivez les procédures d'exécution des commandes décrites., page 57

Application	Commande	Code de commande	Profil utilisateur
Générique	Modifier l'état de la sortie, page 229	1672	Administrateur ou Opérateur
Générique	Réinitialiser les alarmes IO Module, page 229	41099	Administrateur ou Opérateur
Générique	Activer/désactiver les commandes simples, page 229	41100	Administrateur ou Opérateur
Générique	Acquitter la sortie en auto-maintien, page 230	41102	Administrateur ou Opérateur
Générique	Réinitialiser les valeurs minimum/maximum des entrées analogiques, page 230	42890	Administrateur ou Opérateur
Gestion de châssis et de racks	Prédéfinir les compteurs de châssis et de racks, page 232	41352	Administrateur ou Opérateur
Gestion de châssis et de racks	Prérégler les temporisateurs de regraissage du châssis et des racks, page 232	41353	Administrateur ou Opérateur
Commande d'éclairage	Commande d'éclairage, page 234	42120	Administrateur ou Opérateur
Contrôle de charge	Contrôle de charge, page 234	42376	Administrateur ou Opérateur
Gestion du compteur d'impulsions	Attribuer des valeurs de présélection au compteur d'impulsions, page 235	42888	Administrateur ou Opérateur
Système de refroidissement	Attribuer des valeurs de présélection au compteur de seuils de température du tableau de distribution, page 236	42889	Administrateur ou Opérateur

Codes d'erreur IO Module

Les codes d'erreurs générés par IO Module sont les codes d'erreurs génériques , page $60.\,$

Commandes génériques

Modifier l'état de la sortie

La commande permet de changer l'état des sorties du module d'E/S (sorties définies par l'utilisateur) en utilisant le logiciel EcoStruxure Power Commission.

Pour modifier l'état de la sortie, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	1672	Code de commande = 1672
0x1F40	8001	-	INT16U	13	Nombre de paramètres (octets) = 13
0x1F41	8002	-	INT16U	_	Destination =
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	-	INT16U	1-3	Numéro de la sortie 1 = sortie 1 2 = sortie 2 3 = sortie 3
0x1F46	8007	-	INT16U	_	Valeur à configurer : • 0x0000 = Modifier l'état de la sortie à 0 (Désactivé) • 0x0100 = Modifier l'état de la sortie à 1 (Activé)

Réinitialiser l'alarme IO Module

Les alarmes peuvent être lues à partir du registre d'état des alarmes, page 212.

Pour réinitialiser les alarmes du module IO, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	41099	Code de commande = 41099
0x1F40	8001	-	INT16U	10	Nombre de paramètres (octets) = 10
0x1F41	8002	-	INT16U	_	Destination = • IO 1 : 8193 (0x2001) • IO 2 : 8449 (0x2101)
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur

Activer/désactiver les commandes simples

Pour activer ou désactiver les commandes simples, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	41100	Code de commande = 41100
0x1F40	8001	-	INT16U	11	Nombre de paramètres (octets) = 11

Adresse	Registre	Unité	Туре	Plage	Description
0x1F41	8002	-	INT16U	_	Destination = • IO 1 : 8193 (0x2001) • IO 2 : 8449 (0x2101)
0x1F42	8003	_	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	-	INT16U	_	MSB : Activer ou désactiver : • 0 = Désactiver la commande simple • 1 = Activer la commande simple LSB : 0 (non utilisé)

Acquitter la sortie en auto-maintien

Pour acquitter la sortie en auto-maintien, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	41102	Code de commande = 41102
0x1F40	8001	-	INT16U	11	Nombre de paramètres (octets) = 11
0x1F41	8002	-	INT16U	_	Destination = • IO 1 : 8193 (0x2001) • IO 2 : 8449 (0x2101)
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	-	INT16U	-	MSB: • 0x01 = Relais de sortie numérique 1 • 0x02 = Relais de sortie numérique 2 • 0x03 = Relais de sortie numérique 3 • 0xFF = Déverrouiller toutes les sorties numériques LSB: 0 (non utilisé)

Réinitialiser les valeurs minimum/maximum des entrées analogiques

Les valeurs minimum/maximum des entrées analogiques peuvent être lues dans les registres d'entrées analogiques, page 199.

Pour réinitialiser les valeurs minimum/maximum des entrées analogiques, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	42890	Code de commande = 42890
0x1F40	8001	_	INT16U	10	Nombre de paramètres (octets) = 10
0x1F41	8002	-	INT16U	-	Destination =
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur

Commandes d'application

Prédéfinir les compteurs de châssis et de racks

Les valeurs des compteurs de châssis et de racks peuvent être lues à partir des registres de gestion de châssis, page 216.

Pour attribuer des valeurs de présélection aux compteurs de châssis ou de racks, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	41352	Code de commande = 41352
0x1F40	8001	-	INT16U	16	Nombre de paramètres (octets) = 16
0x1F41	8002	_	INT16U	-	Destination =
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	_	INT16U	0-65535	Présélection/réinitialisation du compteur connecté : • 0–65534 = valeur de présélection du compteur connecté • 65535 (0xFFFF) = ne pas attribuer de valeurs de présélection au compteur connecté
0x1F46	8007	_	INT16U	0-65535	Présélection/réinitialisation du compteur déconnecté : • 0–65534 = valeur de présélection du compteur déconnecté • 65535 (0xFFFF) = ne pas attribuer de valeurs de présélection au compteur déconnecté
0x1F47	8008	-	INT16U	0-65535	Présélection/réinitialisation du compteur de test : • 0–65534 = valeur de présélection du compteur de test • 65535 (0xFFFF) = ne pas attribuer de valeurs de présélection au compteur de test

Prédéfinir les temporisateurs de regraissage

Pour préconfigurer les temporisateurs de regraissage, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	41353	Code de commande = 41353
0x1F40	8001	-	INT16U	18	Nombre de paramètres (octets) = 18
0x1F41	8002	-	INT16U	-	Destination = • IO 1 : 8193 (0x2001) • IO 2 : 8449 (0x2101)
0x1F42	8003	_	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur

Adresse	Registre	Unité	Туре	Plage	Description
0x1F45- 0x1F46	8006-8007	_	INT16U	-	Temps de fonctionnement depuis la dernière maintenance de graissage
					0–157766400 = valeur de préconfiguration du compteur du temporisateur de regraissage
					4294967295 (0xFFFFFFFF) = aucune préconfiguration
0x1F47- 0x1F48	8008-8009		INT32U	-	Temps de fonctionnement depuis le dernier changement en position rack-in (délai depuis la dernière déconnexion)
					0–28944000 = valeur de préconfiguration du temporisateur de retrait
					4294967295 (0xFFFFFFFF) = aucune préconfiguration

Commande d'éclairage

L'état de la commande d'éclairage peut être lu à partir des registres de contrôle de l'éclairage, page 217.

Pour contrôler l'éclairage, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Bit	Description
0x1F3F	8000	_	INT16U	42120	-	Code de commande = 42120
0x1F40	8001	_	INT16U	13	-	Nombre de paramètres (octets) = 13
0x1F41	8002	_	INT16U	_	-	Destination = IO 1 : 8193 (0x2001)
0x1F42	8003	_	INT16U	1	-	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	_	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	_	INT16U	_	-	MSB : State
					0	0 = éclairage désactivé 1 = éclairage activé
					1	0 = sans temporisation1 = avec temporisation
					-	LSB = Temporisateur (MSB) 1–54000 secondes (si bit 1 à l'état d'initialisation) Toute valeur 0-0xffff (si bit 1 à l'état de réinitialisation)
0x1F46	8007	-	INT16U	-	-	MSB = Temporisateur (LSB) 1–54000 secondes (si bit 1 à l'état d'initialisation) Toute valeur 0-0xffff (si bit 1 à l'état de réinitialisation) LSB = 0 (non utilisé)

Contrôle de charge

L'état de la commande de charge peut être lu à partir des registres de contrôle de charge, page 218.

Pour contrôler la charge, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Bit	Description
0x1F3F	8000	_	INT16U	42376	_	Code de commande = 42376
0x1F40	8001	_	INT16U	13	_	Nombre de paramètres (octets) = 13
0x1F41	8002	_	INT16U	_	_	Destination = IO 1 : 8193 (0x2001)
0x1F42	8003	_	INT16U	1	_	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	_	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	_	INT16U	_	_	MSB : State
					0	0 = charge inactive1 = charge active
					1	0 = sans temporisation1 = avec temporisation
					-	LSB = Temporisateur (MSB)
						1–54000 secondes (si bit 1 à l'état d'initialisation)

Adresse	Registre	Unité	Туре	Plage	Bit	Description
						Toute valeur 0-0xffff (si bit 1 à l'état de réinitialisation)
0x1F46	8007	_	INT16U	-	-	MSB = Temporisateur (LSB) 1–54000 secondes (si bit 1 à l'état d'initialisation) Toute valeur 0-0xffff (si bit 1 à l'état de réinitialisation)
					_	LSB = 0 (non utilisé)

Attribuer des valeurs de présélection aux compteurs d'impulsions

Pour attribuer des valeurs de présélection aux compteurs d'impulsions, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	42888	Code de commande = 42888
0x1F40	8001	_	INT16U	34	Nombre de paramètres (octets) = 34
					NOTE: Le nombre de paramètres correspond au nombre d'octets des 17 registres 8001–8015 et 8022–8023. Les octets des registres 8016–8021 ne sont pas comptés comme paramètres de commande.
0x1F41	8002	_	INT16U	_	Destination =
					• IO 1 : 8193 (0x2001)
					• IO 2 : 8449 (0x2101)
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45- 0x1F46	8006-8007	_	INT32U	0-4294967295	Présélection/réinitialisation du compteur d'impulsions I1 :
					0-4294967294 = valeur de présélection du compteur d'impulsions l1
					 4294967295 (0xFFFFFFFF) = ne pas attribuer de valeurs de présélection au compteur d'impulsions l1
0x1F47- 0x1F48	8008-8009	_	INT32U	0-4294967295	Présélection/réinitialisation du compteur d'impulsions l2 :
					0-4294967294 = valeur de présélection du compteur d'impulsions l2
					 4294967295 (0xFFFFFFFF) = ne pas attribuer de valeurs de présélection au compteur d'impulsions l2
0x1F49- 0x1F4A	8010-8011	-	INT32U	0-4294967295	Présélection/réinitialisation du compteur d'impulsions 13 :
					0-4294967294 = valeur de présélection du compteur d'impulsions l3
					 4294967295 (0xFFFFFFFF) = ne pas attribuer de valeurs de présélection au compteur d'impulsions l3
0x1F4B- 0x1F4C	8012-8013	-	INT32U	0-4294967295	Présélection/réinitialisation du compteur d'impulsions l4 :
					0-4294967294 = valeur de présélection du compteur d'impulsions l4
					 4294967295 (0xFFFFFFFF) = ne pas attribuer de valeurs de présélection au compteur d'impulsions l4

Adresse	Registre	Unité	Туре	Plage	Description
0x1F4D- 0x1F4E	8014-8015	-	INT32U	0-4294967295	Présélection/réinitialisation du compteur d'impulsions 15 :
					0-4294967294 = valeur de présélection du compteur d'impulsions l5
					 4294967295 (0xFFFFFFFF) = ne pas attribuer de valeurs de présélection au compteur d'impulsions I5
0x1F4F	8016	_	_	_	Doit être défini sur 0 (réglage d'usine).
0x1F50	8017	-	-	_	Doit être défini sur 8019 (réglage d'usine).
0x1F51	8018	_	_	_	Doit être défini sur 8020 (réglage d'usine).
0x1F52	8019	-	-	_	Doit être défini sur 8021 (réglage d'usine).
0x1F53	8020	-	-	-	Doit être défini sur 0.
0x1F54	8021	_	_	_	Doit être défini sur 0.
0x1F55- 0x1F56	8022-8023	_	INT32U	0-4294967295	Présélection/réinitialisation du compteur d'impulsions l6 :
					0-4294967294 = valeur de présélection du compteur d'impulsions l6
					 4294967295 (0xFFFFFFFF) = ne pas attribuer de valeurs de présélection au compteur d'impulsions l6

Attribuer des valeurs de présélection aux compteurs de seuils de température du tableau de distribution

Pour attribuer des valeurs de présélection aux compteurs de seuils de température du tableau de distribution, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	42889	Code de commande = 42889
0x1F40	8001	-	INT16U	16	Nombre de paramètres (octets) = 16
0x1F41	8002	-	INT16U	-	Destination =
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	-	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur ou Opérateur
0x1F45	8006	_	INT16U	0-65535	Réinitialisation/présélection du compteur de seuil 1 de température du tableau de distribution : • 0–65534 = valeur de présélection du compteur de seuil 1 de température du tableau de distribution • 65535 (0xFFFF) = ne pas attribuer de valeurs de présélection au compteur

Adresse	Registre	Unité	Туре	Plage	Description
0x1F46	8007	-	INT16U	0-65535	Réinitialisation/présélection du compteur de seuil 2 de température du tableau de distribution :
					0–65534 = valeur de présélection du compteur de seuil 2 de température du tableau de distribution
					65535 (0xFFFF) = ne pas attribuer de valeurs de présélection au compteur
0x1F47	8008	-	INT16U	0-65535	Réinitialisation/présélection du compteur de seuil 3 de température du tableau de distribution :
					0–65534 = valeur de présélection du compteur de seuil 3 de température du tableau de distribution
					65535 (0xFFFF) = ne pas attribuer de valeurs de présélection au compteur

Données de l'interface IFM pour les disjoncteurs ComPacT NS

Contenu de cette partie

Registres de l'interface IFM	239
Commandes de l'interface IFM	245

Registres de l'interface IFM

Contenu de ce chapitre

Identification de l'interface IFM	240
Paramètres réseau Modbus	243

Identification de l'interface IFM

Version logicielle de l'interface IFM

La version logicielle de l'interface IFM débute au registre 11776 et sa longueur maximale est de 8 registres.

La révision du firmware est une chaîne ASCII au format XXX.YYY.ZZZ, avec :

- XXX = version majeure (000–127)
- YYY = version mineure (000–255)
- ZZZ = numéro de révision (000–255)

Le caractère NULL clôture le numéro de révision.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2DDF- 0x2DEE	11744– 11759	R	_	CHAÎNE D'OCTETS	_	Famille d'appareils
0x2DEF- 0x2DF6	11760– 11767	R	-	CHAÎNE D'OCTETS	_	Gamme de produits
0x2DF7- 0x2DFE	11768– 11775	R	_	CHAÎNE D'OCTETS	_	Modèle de produit
0x2DFF- 0x2E04	11776– 11781	R	_	CHAÎNE D'OCTETS	_	Révision du firmware

Numéro de série de l'interface IFM TRV00210 ou STRV00210

Le numéro de série de l'interface IFM TRV00210 ou STRV00210 est composé d'au maximum 11 caractères alphanumériques au format suivant : PPYYWWDnnnn.

- PP = code de l'usine
- YY = année de fabrication (05–99)
- WW = semaine de fabrication (01–53)
- D = jour de fabrication (1–7)
- nnnn = numéro de production de l'appareil le jour de sa fabrication (0001– 9999)

Une requête de lecture de 6 registres est nécessaire pour lire le numéro de série de l'interface IFM.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2E07	11784	R	_	CHAÎNE D'OCTETS	-	'PP'
0x2E08	11785	R	_	CHAÎNE D'OCTETS	'05'–'99'	'YY'
0x2E09	11786	R	_	CHAÎNE D'OCTETS	'01'–'53'	'WW'
0x2E0A	11787	R	-	CHAÎNE	D : '1'–'7'	'Dn'
				D'OCTETS	n: '0'–'9'	
0x2E0B	11788	R	_	CHAÎNE D'OCTETS	'00'–'99'	'nn'
0x2E0C	11789	R	_	CHAÎNE D'OCTETS	'0'–'9'	'n' (le caractère NULL clôture le numéro de série)

Numéro de série de l'interface IFM LV434000

Le numéro de série de l'interface IFM LV434000 est composé de 17 caractères alphanumériques maximum au format suivant : PPPPPYYWWDLnnnn0.

- PPPPPP = code de l'usine (exemple : le code de l'usine BATAM est 0000HL)
- YY = année de fabrication (05–99)
- WW = semaine de fabrication (01–53)
- D = jour de fabrication (1–7)
- L = numéro de ligne ou de machine (0-9 ou a-z)
- nnnn = numéro de production de l'appareil le jour de sa fabrication (0001– 9999)

Une requête de lecture de dix registres est nécessaire pour lire le numéro de série de l'interface IFM.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2E5C-0x2E5E	11869-11871	R	_	CHAÎNE D'OCTETS	_	'РРРРР'
0x2E5F	11872	R	_	CHAÎNE D'OCTETS	'05'–'99'	'YY'
0x2E60	11873	R	_	CHAÎNE D'OCTETS	'01'–'53'	'WW'
0x2E61	11874	R	-	CHAÎNE D'OCTETS	D: '1'-'7' L: '0'-'9' ou 'a'-'z	יטני
0x2E62	11875	R	_	CHAÎNE D'OCTETS	'00'–'99'	'nn'
0x2E63	11876	R	-	CHAÎNE D'OCTETS	'00'–'99'	'nn'
0x2E64-0x2E65	11877-11878	R	_	CHAÎNE D'OCTETS	,0,	'0' (le caractère NULL termine le numéro de série)

Date et heure actuelles

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2E73- 0x2E76	11892– 11895	R-WC	_	DATETIME	-	Date et heure actuelles au format DATETIME
0x2E77- 0x2E78	11896– 11897	R	Secondes	INT32U	0x00- 0xFFFFF- FFF	Nombre de secondes comptabilisées depuis le dernier démarrage

Identification du produit

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2E7C	11901	R	-	INT16U	-	Identification du produit = 15146 pour l'interface IFM

Révision matérielle pour l'interface IFM LV434000

La révision matérielle de l'interface IFM LV434000 commence au registre 11922 et a une longueur maximale de 10 registres.

La révision du matériel est une chaîne ASCII au format XXX.YYY.ZZZ, avec :

- XXX = version majeure (000–127)
- YYY = version mineure (000–255)
- ZZZ = numéro de révision (000–255)

Le caractère NULL clôture le numéro de révision.

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2E91- 0x2E96	11922– 11927	R	-	CHAÎNE D'OCTETS	-	Révision du matériel

Lecture d'identification de produit

La fonction « Lecture d'identification de produit » permet d'accéder de façon normalisée aux informations requises pour identifier clairement un équipement. La description se compose d'un ensemble d'objets (chaînes de caractères ASCII).

Une description complète de la fonction « Lecture d'identification de produit » est disponible sur www.modbus.org.

Le codage pour l'identification de l'interface IFM est le suivant :

Nom	Туре	Description			
Nom du fournisseur	CHAÎNE D'OCTETS	'Schneider Electric' (18 caractères)			
Code de produit	CHAÎNE D'OCTETS	'LV434000', 'TRV00210' (1) ou 'STRV00210'			
Révision du firmware	CHAÎNE D'OCTETS	'XXX.YYY.ZZZ' de l'interface IFM version 002.002.000			
URL du fournisseur	CHAÎNE D'OCTETS	'https://www.se.com' (33 caractères)			
Nom de produit	CHAÎNE D'OCTETS	'ULP/module d'interface de communication Modbus-SL'			

(1) Le code de produit renvoie la valeur 'TRV00210-L' lorsque l'interface IFM TRV00210 utilise le firmware IFM hérité. Pour en savoir plus, consultez le *Guide utilisateur MasterPact du protocole Modbus hérité*.

Identification de l'IMU

L'identification de l'IMU peut être définie à l'aide du logiciel EcoStruxure Power Commission, page 17. Lorsqu'ils ne sont pas configurés, les registres d'identification renvoient la valeur 0 (0x0000).

L'afficheur FDM121 affiche les 14 premiers caractères du nom de l'unité fonctionnelle intelligente (IMU).

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2E18- 0x2E2E	11801– 11823	R	_	CHAÎNE D'OCTETS	_	Nom de l'IMU = jusqu'à 45 caractères ASCII se terminant par le caractère NULL 0x00
0x2E2F- 0x2E38	11824– 11833	R	_	CHAÎNE D'OCTETS	_	Nom du fournisseur : 'Schneider Electric'
0x2E39- 0x2E42	11834– 11843	R	_	CHAÎNE D'OCTETS	_	Code de produit = 'TRV00210' ou 'LV434000'
0x2E43- 0x2E44	11844– 11845	R	_	CHAÎNE D'OCTETS	_	Réservé
0x2E45- 0x2E5B	11846– 11868	R	_	CHAÎNE D'OCTETS	_	Emplacement de l'IMU = jusqu'à 45 caractères ASCII se terminant par le caractère NULL 0x00

Paramètres réseau Modbus

Position du commutateur de verrouillage

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E72	11891	L	_	INT16U	1-3	Position du commutateur de verrouillage 1 = Le commutateur de verrouillage Modbus est en position verrouillée 3 = Le commutateur de verrouillage Modbus est en position ouverte

Durée de validité des données

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x306A	12395	L	s	INT16U	5-300 (par incréments de 5 s)	Durée de validité des données du jeu de données

Etat de la mesure de vitesse automatique

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x306E	12399	L	_	INT16U	0-1	Etat de la mesure de vitesse automatique 0 = La mesure de vitesse automatique est désactivée 1 = La mesure de vitesse automatique est activée (réglage d'usine)

Adresse Modbus de l'interface IFM

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x306F	12400	L	-	INT16U	1-99	Adresse Modbus de l'interface IFM

Parité Modbus

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x3070	12401	L	-	INT16U	1-3	Parité Modbus
						1 = sans parité (aucune)
						2 = paire (réglage usine)
						• 3 = impaire

Débit Modbus en bauds

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x3071	12402	L	_	INT16U	5-8	Débit Modbus en bauds
						• 5 = 4800 bauds
						• 6 = 9600 bauds
						7 = 19200 bauds (réglage d'usine)
						• 8 = 38400 Baud

Nombre de bits d'arrêt

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x3072	12403	L	-	INT16U	0-5	Nombre de bits d'arrêt 0 = aucune modification 1 = Modbus standard 2 = 1/2 bit d'arrêt 3 = 1 bit d'arrêt 4 = 1 bit et demi d'arrêt 5 = 2 bits d'arrêt

Commandes de l'interface IFM

Contenu de ce chapitre

Liste des commandes de l'interface IFM	246
Commandes de l'interface IFM	247

Liste des commandes de l'interface IFM

Liste des commandes

Le tableau suivant répertorie les commandes de l'interface IFM avec les codes de commande et les profils utilisateur correspondants. Suivez les procédures d'exécution des commandes décrites, page 57.

Commande	Code de commande	Profil utilisateur
Obtenir l'heure actuelle, page 247	768	Aucun mot de passe n'est requis
Régler l'heure absolue, page 247	769	Aucun mot de passe n'est requis
Lire le nom et l'emplacement de l'IMU, page 248	1024	Aucun mot de passe n'est requis
Écrire le nom et l'emplacement de l'IMU, page 248	1032	Administrateur
Définir la durée de validité des données, page 249	41868	Administrateur, Services, Ingénieur ou Opérateur

Codes d'erreur

Les codes d'erreur générés par l'interface IFM sont les codes d'erreur génériques, page 60.

Commandes de l'interface IFM

Obtenir l'heure actuelle

La commande d'obtention de l'heure actuelle n'est pas associée à une protection matérielle. Lorsque la flèche du commutateur de verrouillage Modbus (situé sur la face avant de l'interface IFM) pointe en direction du cadenas fermé, la commande d'obtention de l'heure actuelle est tout de même activée.

Pour obtenir l'heure actuelle de tous les modules, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	768 Code de commande = 768	
0x1F40	8001	_	INT16U	10	Nombre de paramètres (octets) = 10
0x1F41	8002	_	INT16U	768	Destination = 768 (0x0300)
0x1F42	8003	_	INT16U	0	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	0	Mot de passe de la commande = 0 (aucun mot de passe requis)

Les registres suivants contiennent les données temporelles :

- le registre 8023 indique le mois dans les bits de poids fort (MSB), le jour est dans les bits de poids faible (LSB).
- le registre 8024 indique le décalage en année dans les MSB (ajoutez 2000 pour connaître l'année) et l'heure dans les LSB.
- le registre 8025 indique les minutes dans les MSB, les secondes sont dans les LSB.
- le registre 8026 indique les millisecondes.

Régler l'heure absolue

La commande de réglage de l'heure absolue n'est pas associée à une protection matérielle. Lorsque la flèche du commutateur de verrouillage Modbus (situé sur la face avant de l'interface IFM) pointe en direction du cadenas fermé, la commande de réglage de l'heure absolue est tout de même activée.

Pour régler l'heure absolue de tous les modules IMU, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	769	Code de commande = 769
0x1F40	8001	-	INT16U	18	Nombre de paramètres (octets) = 18
0x1F41	8002	-	INT16U	768	Destination = 768 (0x0300)
0x1F42	8003	-	INT16U	0	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	0	Mot de passe de la commande = 0 (aucun mot de passe requis)
0x1F45	8006	-	INT16U	_	MSB = mois (1–12)
					LSB = jour du mois (1–31)
0x1F46	8007	-	INT16U	_	MSB = année (0–99, 0 signifiant l'année 2000)
					LSB = heures (0–23)
0x1F47	8008	-	INT16U	_	MSB = minutes (0–59)
					LSB = secondes (0–59)
0x1F48	8009	ms	INT16U	0-999	Millisecondes (0–999)

En cas de perte d'alimentation 24 VCC, le compteur de date et d'heure est réinitialisé et redémarre au 1er janvier 2000. Il est donc indispensable de régler l'heure absolue de tous les modules IMU une fois que l'alimentation électrique 24 V CC est rétablie.

De plus, du fait de l'écart de l'horloge de chaque module IMU, il est impératif de régler régulièrement l'heure absolue de tous les modules IMU. La fréquence recommandée est d'au moins une fois toutes les 15 minutes.

Lire le nom et l'emplacement de l'IMU

L'afficheur FDM121 affiche le nom de l'IMU, mais limité aux 14 premiers caractères.

Pour lire le nom et l'emplacement de l'IMU, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	1024	Code de commande = 1024
0x1F40	8001	_	INT16U	16	Nombre de paramètres (octets) = 16
0x1F41	8002	_	INT16U	768	Destination = 768 (0x0300)
0x1F42	8003	_	INT16U	0	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	0	Mot de passe de la commande = 0 (aucun mot de passe requis)
0x1F45- 0x1F46	8006-8007	-	INT32U	-	17039489 = lecture du nom de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0081 dans le registre 8007)
					17039490 = lecture de l'emplacement de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0082 dans le registre 8007)
0x1F47	8008	_	INT16U	2048	2048

Le nom et l'emplacement de l'IMU sont renvoyés aux registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F53	8020	_	INT16U	1024	Code de la dernière commande
0x1F54	8021	_	INT16U	_	Etat de la commande
					0 = commande exécutée
					Autrement, échec de la commande
0x1F55	8022	_	INT16U	_	Nombre d'octets renvoyés (0 si échec de la commande)
0x1F56	8023	-	CHAÎNE	_	Si réussite de la commande
			D'OCTETS		MSB = premier caractère du nom ou de l'emplacement de l'IMU
					LSB = deuxième caractère du nom ou de l'emplacement de l'IMU
0x1F57- 0x1F6D	8024-8046	_	CHAÎNE D'OCTETS	_	Dépend de la longueur du nom ou de l'emplacement de l'IMU et se termine par le caractère NULL 0x00

Écrire le nom et l'emplacement de l'IMU

Le nom et l'emplacement de l'IMU peuvent être lus du registre 11801 à 11868 .

L'afficheur FDM121 affiche le nom de l'IMU, mais limité aux 14 premiers caractères.

Pour écrire le nom et l'emplacement de l'IMU, l'utilisateur doit configurer les registres de commande de la façon suivante :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	1032	Code de commande = 1032
0x1F40	8001	-	INT16U	16–62	Nombre de paramètres (octets) = dépend de la longueur du nom ou de l'emplacement de l'IMU (jusqu'à 46 caractères)
0x1F41	8002	-	INT16U	0	Destination = 0 (0x0000)
0x1F42	8003	_	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	_	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45- 0x1F46	8006-8007	_	INT32U	-	17039489 = écriture du nom de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0081 dans le registre 8007)
					17039490 = écriture de l'emplacement de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0082 dans le registre 8007)
0x1F47	8008	_	INT16U	2048	2048
0x1F48	8009	_	CHAÎNE D'OCTETS	_	MSB = premier caractère du nom ou de l'emplacement de l'IMU
					LSB = deuxième caractère du nom ou de l'emplacement de l'IMU
0x1F49- 0x1F5F	8010-8038	-	CHAÎNE D'OCTETS	_	Dépend de la longueur du nom ou de l'emplacement de l'IMU et se termine par le caractère NULL 0x00

Définir la durée de validité des données

Cette commande permet de définir la durée de validité des données des jeux de données standard et hérités.

La durée de validité des données peut être lue dans un registre Durée de validité des données, page 243.

Pour définir la durée de validité des données, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	41868	Code de commande = 41868
0x1F40	8001	-	INT16U	12	Nombre de paramètres (octets) = 12
0x1F41	8002	-	INT16U	769	Destination = 769 (0x0301)
0x1F42	8003	-	INT16U	1	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur, Services, Ingénieur ou Opérateur
0x1F45	8006	S	INT16U	5-300 (par incréments de 5 s)	Durée de validité des données Réglage d'usine : 10 s

Données de l'interface IFE pour les disjoncteurs ComPacT NS

Contenu de cette partie

Registres de l'interface IFE	25
Commandes de l'interface IFE	25

Registres de l'interface IFE

Contenu de ce chapitre

Registres d'identification et d'état de l'interface IFE	252
Paramètres réseau IP	257

Registres d'identification et d'état de l'interface IFE

Version logicielle de l'interface IFE

La version logicielle de l'interface IFE débute au registre 11776 et sa longueur maximale est de 8 registres.

La version logicielle est une chaîne ASCII au format XXX.YYY.ZZZ, avec :

- XXX = version majeure (000–127)
- YYY = version mineure (000-255)
- ZZZ = numéro de révision (000–255)

Le caractère NULL clôture le numéro de révision.

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2DDF- 0x2DEE	11744-11759	L	-	CHAÎNE D'OCTETS	_	Famille d'appareils
6x2DEF- 0x2DF0	11760-11767	L	-	CHAÎNE D'OCTETS	_	Gamme de produits
0x2DF7- 0x2DFE	11768-11775	L	_	CHAÎNE D'OCTETS	_	Modèle de produit
0x2DFF- 0x2E04	11776-11781	L	_	CHAÎNE D'OCTETS	_	Révision du firmware

Version matérielle de l'interface IFE

La version matérielle de l'interface IFE débute au registre 11784 et sa longueur maximale est de 8 registres.

La version matérielle est une chaîne ASCII au format XXX.YYY.ZZZ, avec :

- XXX = version majeure (000–127)
- YYY = version mineure (000-255)
- ZZZ = numéro de révision (000–255)

Le caractère NULL clôture le numéro de révision.

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E07- 0x2E0C	11784-11789	L	_	CHAÎNE D'OCTETS	1	Révision du matériel

Identification de l'IMU

L'identification de l'IMU peut être configurée à l'aide du logiciel EcoStruxure Power Commission. Lorsqu'ils ne sont pas configurés, les registres d'identification renvoient la valeur 0 (0x0000).

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E2F- 0x2E38	11824-11833	L-EC	-	CHAÎNE D'OCTETS	_	Nom de l'application utilisateur défini via : • le logiciel EcoStruxure Power Commission, • les pages Web IFE. Nom de l'équipement utilisé pour l'acquisition de l'adresse IP en utilisant DHCP et le nom convivial lors de la détection DPWS des équipements. Exemple : 'IFE-0A129F' La longueur maximale est de 64 caractères
0x2E18- 0x2E2E	11801-11823	L		CHAÎNE D'OCTETS	_	Nom de l'IMU (pour ComPacT NS/NSX et PowerPacT uniquement)
0x2E2F- 0x2E38	11824-11833	L	-	CHAÎNE D'OCTETS	_	Nom du fournisseur : 'Schneider Electric'
0x2E39- 0x2E42	11834-11843	L	_	CHAÎNE D'OCTETS	-	Code de produit : • 'LV434001' ou 'LV434010' = IFE- communication Ethernet Modbus TCP/IP • 'LV434002' or 'LV434011' = IFE - communication maître Ethernet Modbus TCP/ IP
0x2E43- 0x2E44	11844-11845	_	-	_	_	Réservé
0x2E45- 0x2E5B	11846-11868	L-LC-EC	-	CHAÎNE D'OCTETS	_	Emplacement de l'IMU (pour ComPacT NS/NSX et PowerPacT uniquement) = jusqu'à 45 caractères ASCII se terminant par le caractère NULL 0x00

Position du commutateur de verrouillage

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E72	11891	L	_	INT16U	1,3	Position du commutateur de verrouillage 1 = Le commutateur de verrouillage est en position verrouillée 3 = Le commutateur de verrouillage est en position déverrouillée

Date et heure actuelles

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E73- 0x2E76	11892-11895	L-EC	_	DATETIME	_	Date et heure actuelles au format DATETIME
0x2E77- 0x2E78	11896-11897	L	Secondes	INT32U	0x00– 0xFFFFFF- FF	Nombre de secondes comptabilisées depuis le dernier démarrage

Identification du produit

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E7C	11901	L	-	INT16U	17100- 17101	Identification du produit : 17100 : interface Ethernet IFE pour un disjoncteur ('LV434001' ou 'LV434010') 17101 : serveur de tableau Ethernet IFE ('LV434002' ou 'LV434011')

Durée de validité des données

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x306A	12395	L	s	INT16U	5-300 (par incréments de 5 s)	Durée de validité des données du jeu de données

Lecture d'identification de produit

La fonction « Read Device Identification » permet d'accéder de façon normalisée aux informations requises pour identifier clairement un équipement. La description se compose d'un ensemble d'objets (chaînes de caractères ASCII).

Une description complète de la fonction « Read Device Identification » est disponible sur www.modbus.org.

Le codage pour l'identification de l'interface IFE est le suivant :

Nom	Туре	Description
Nom du fournisseur	CHAÎNE D'OCTETS	'Schneider Electric' (18 caractères)
Code de produit	CHAÎNE D'OCTETS	'LV434001' ou 'LV434010''LV434002' ou 'LV434011'
Révision du firmware	CHAINE D'OCTETS	'XXX.YYY.ZZZ'
URL du fournisseur	CHAÎNE D'OCTETS	'www.se.com' (26 caractères)
Nom de produit	CHAÎNE D'OCTETS	 Interface Ethernet IFE pour un disjoncteur (LV434001 ou LV434010): 'Interface Ethernet pour disjoncteurs BT' Serveur de tableau Ethernet IFE (LV434002 ou LV434011): 'Interface Ethernet pour disjoncteurs BT + passerelle'
Famille	CHAINE D'OCTETS	'Passerelle et serveur'
Gamme	CHAINE D'OCTETS	'Enerlin'X'
Modèle	CHAÎNE D'OCTETS	'interface Ethernet IFE' ou 'IFE/passerelle'
ID produit	INT16U	ID produit du cœur de l'IMU 17100 = IFE sans passerelle 17101 = IFE avec passerelle

Adresse MAC du serveur IFE

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E7D- 0x2E7F	11902-11904	L	-	INT16U	-	Adresse MAC de l'interface IFE codée sur 3 registres (6 octets) sous forme hexadécimale. Exemple: L'adresse MAC 00:80:F4:02:12:34 (ou 00-80-F4-02-12-34) est codée en hexadécimal comme suit : 0080F4021234 (0x00 0x80 0xF4 0x02 0x12 0x34).

Date et heure de fabrication

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x2E89- 0x2E8C	11914-11917	L	-	DATETIME	-	Date et heure de fabrication

Numéro de série de l'interface IFE

Le numéro de série de l'interface IFE est composé de 11 caractères alphanumériques maximum au format suivant : PPYYWWDnnnn.

- PP = code de l'usine
- YY = année de fabrication (05–99)
- WW = semaine de fabrication (01–53)
- D = jour de fabrication (1–7)
- nnnn = numéro de production de l'appareil le jour de sa fabrication (0001–9999)

Une requête de lecture de 6 registres est nécessaire pour lire le numéro de série de l'interface IFE.

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x02E91	11922	L	-	CHAÎNE D'OCTETS	_	'PP'
0x02E92	11923	L	_	CHAÎNE D'OCTETS	'05'–'99'	'YY'
0x02E93	11924	L	_	CHAÎNE D'OCTETS	'01'–'53'	'WW'
0x02E94	11925	L	_	CHAÎNE	D : '1'–'7'	'Dn'
				D'OCTETS	n : '0'–'9'	
0x02E95	11926	L	_	CHAÎNE D'OCTETS	'00'–'99'	'nn'
0x02E96	11927	L	-	CHAÎNE D'OCTETS	'0'–'9'	'n' (le caractère NULL clôture le numéro de série)

Paramètres Modbus du serveur IFE

Ces paramètres sont valides pour le serveur de tableau IFE uniquement.

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x306F	12400	L	-	INT16U	-	Adresse Modbus du serveur IFE (toujours 255)
0x3070	12401	L	-	INT16U	1-3	Parité Modbus : • 1 = pas de parité • 2 = paire (réglage usine) • 3 = impaire
0x3071	12402	L	_	INT16U	5-8	Débit Modbus en bauds : • 5 = 4800 Baud • 6 = 9600 Baud • 7 = 19 200 Baud (réglage d'usine) • 8 = 38 400 Baud
0x3072	12403	L	-	INT16U	1,3,5	Nombre de bits d'arrêt : • 1 = Auto (réglage d'usine) • 3 = 1 bit d'arrêt • 5 = 2 bits d'arrêt

Synchronisation de l'heure

Adresse	Registre	L/E	Unité	Туре	Plage	Description
0x3098- 0x30B7	12441- 12472	L	_	CHAÎNE D'OCTETS	-	Type de source utilisée pour la synchronisation de l'heure : • 'Auto-SNTP' • 'Manuel-Modbus' • 'Manuel-ULP' • 'Manuel-Page Web'
0x30B8- 0x30BB	12473- 12476	L	-	DATETIME	-	Date et heure de la dernière synchronisation de l'heure
0x30BC- 0x30BD	12477- 12478	L	s	FLOAT32	-	Temps écoulé depuis la dernière synchronisation de l'heure
0x30BE	12479	L	_	INT16U	0-2	Etat de la synchronisation automatique de l'heure : • 0 = SNTP désactivé • 1 = échec SNTP • 2 = réussite SNTP
0x30BF	12480	L	_	INT16	_	Nombre d'échecs de la synchronisation SNTP

Paramètres réseau IP

Paramètres réseau

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x27FF- 0x2800	10240– 10241	R	-	INT32	0–1	Mode de configuration du réseau : • 0 = IPv4 uniquement • 1 = IPv4 et IPv6

Paramètres IPv4

Adresse	Registre	RW	Unité	Туре	Plage	Description
0x2823- 0x2824	10276– 10277	R-WC	-	INT32U	0–2	Mode d'acquisition d'adresse IPv4, défini à l'aide du logiciel EcoStruxure Power Commission : • 0 = Statique • 1 = BootP • 2 = DHCP
0x2825- 0x2826	10278- 10279	R	_	INT32U	-	Etat de l'acquisition des adresses IPv4 : • 0 = Acquisition des adresses IP réussie • 1 = Acquisition des adresses IP réussie en cours • 2 = Acquisition des adresses IP dupliquée • 3 = Erreur lors de l'acquisition des adresses IP
0x2827- 0x2828	10280– 10281	R-WC	_	INT32U	-	Adresse IPv4 de l'interface IFE Exemple: 169.254.1.1 Registre 10280 = 0xA9FE Registre 10281 = 0x0101
0x2829- 0x282A	10282- 10283	R-WC	-	INT32U	-	Masque de sous-réseau IPv4 Exemple: 255.255.0.0 Registre 10282 = 0xFFFF Registre 10283 = 0x0000
0x282B- 0x282C	10284- 10285	R-WC	-	INT32U	-	Adresse IPv4 de passerelle par défaut Exemple: 169.154.1.1 Registre 10284 = 0xA9FE Registre 10285 = 0x0101
0x282D- 0x2846	10286– 10311	-	_	-	_	Réservé

Commandes de l'interface IFE

Contenu de ce chapitre

Liste des commandes de l'interface IFE	259
Commandes génériques de l'interface IFE	260

Liste des commandes de l'interface IFE

Liste des commandes pour les interfaces IFE

Le tableau suivant répertorie les commandes de l'interface IFE avec les codes de commande et les profils utilisateur correspondants. Suivez les procédures d'exécution des commandes décrites Exécution d'une commande, page 57.

Commande	Code de commande	Profil utilisateur
Obtenir l'heure actuelle, page 260	768	Aucun mot de passe n'est requis
Régler l'heure absolue, page 260	769	Aucun mot de passe n'est requis
Lire le nom et l'emplacement de l'IMU, page 261	1024	Aucun mot de passe n'est requis
Écrire le nom et l'emplacement de l'IMU, page 261	1032	Administrateur
Définir la durée de validité des données, page 262	41868	Administrateur, Services, Ingénieur ou Opérateur

Codes d'erreur

Les codes d'erreur générés par l'interface IFE sont les codes d'erreur génériquesRésultat de la commande, page 60.

Commandes génériques de l'interface IFE

Obtenir l'heure actuelle

La commande d'obtention de l'heure actuelle n'est pas associée à une protection matérielle. La commande Get current time est quand même activée lorsque le commutateur de verrouillage situé sur la face avant de l'interface IFE est en position verrouillée.

Pour obtenir l'heure actuelle de tous les modules, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	768	Code de commande = 768
0x1F40	8001	_	INT16U	10	Nombre de paramètres (octets) = 10
0x1F41	8002	_	INT16U	8704	Destination = 8704 (0x2200)
0x1F42	8003	_	INT16U	0	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	0	Mot de passe de la commande = 0 (aucun mot de passe requis)

Les registres suivants contiennent les données temporelles :

- le registre 8023 indique le mois dans les bits de poids fort (MSB), le jour est dans les bits de poids faible (LSB).
- le registre 8024 indique le décalage en année dans les MSB (ajoutez 2000 pour connaître l'année) et l'heure dans les LSB.
- le registre 8025 indique les minutes dans les MSB, les secondes sont dans les LSB.
- le registre 8026 indique les millisecondes.

Régler l'heure absolue

La commande Set absolute time est quand même activée lorsque le commutateur de verrouillage situé sur la face avant de l'interface IFE est en position verrouillée.

Pour régler l'heure absolue de tous les modules IMU, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	-	INT16U	769	Code de commande = 769
0x1F40	8001	-	INT16U	18	Nombre de paramètres (octets) = 18
0x1F41	8002	_	INT16U	8704	Destination = 8704 (0x2200)
0x1F42	8003	_	INT16U	0	Type de sécurité de la commande
0x1F43- 0x1F44	8004-8005	-	CHAÎNE D'OCTETS	0	Mot de passe de la commande = 0 (aucun mot de passe requis)
0x1F45- 0x1F48	8006-8009	_	XDATE	_	Date/heure actuelles

NOTE: En cas de coupure d'alimentation 24 V CC, le compteur de date et d'heure est réinitialisé et redémarre au 1er janvier 2000. Il est donc indispensable de régler l'heure absolue de tous les modules IMU une fois que l'alimentation électrique 24 V CC est rétablie.

NOTE: Lorsque l'interface IFE n'est pas configurée en mode SNTP, il est impératif de régler régulièrement l'heure absolue de tous les modules IMU, du fait de l'écart de l'horloge de chaque module IMU. La fréquence recommandée est d'au moins une fois toutes les 15 minutes.

Lire le nom et l'emplacement de l'IMU

Pour lire le nom et l'emplacement de l'IMU, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	1024	Code de commande = 1024
0x1F40	8001	_	INT16U	16	Nombre de paramètres (octets) = 16
0x1F41	8002	_	INT16U	8704	Destination = 8704 (0x2200)
0x1F42	8003	_	INT16U	0	Type de sécurité de la commande
0x1F43-0x1F44	8004-8005	_	CHAÎNE D'OCTETS	0	Mot de passe de la commande = 0 (aucun mot de passe requis)
0x1F45-0x1F46	8006-8007	_	INT32U	_	17039489 = lecture du nom de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0081 dans le registre 8007)
					17039490 = lecture de l'emplacement de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0082 dans le registre 8007)
0x1F47	8008	_	INT16U	2048	2048

Le nom et l'emplacement de l'IMU sont renvoyés aux registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F53	8020	_	INT16U	1024	Dernier code de commande
0x1F54	8021	-	INT16U	-	Etat de la commande : 0 = commande exécutée Autrement, échec de la commande
0x1F55	8022	_	INT16U	_	Nombre d'octets renvoyés (0 si échec de la commande)
0x1F56	8023	-	CHAÎNE D'OCTETS	8704	Si réussite de la commande : MSB = premier caractère du nom ou de l'emplacement de l'IMU LSB = deuxième caractère du nom ou de l'emplacement de l'IMU
0x1F57- 0x1F6D	8024-8046	_	CHAÎNE D'OCTETS	_	Dépend de la longueur du nom ou de l'emplacement de l'IMU et se termine par le caractère NULL 0x00

Ecrire le nom et l'emplacement de l'IMU

Le nom et l'emplacement de l'IMU peuvent être lus du registre 11801 à 11868, page 252.

Pour écrire le nom et l'emplacement de l'IMU, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	1032	Code de commande = 1032
0x1F40	8001	_	INT16U	16-62	Nombre de paramètres (octets) = dépend de la longueur du nom ou de l'emplacement de l'IMU (jusqu'à 46 caractères)
0x1F41	8002	_	INT16U	0	Destination = 0 (0x0000)
0x1F42	8003	_	INT16U	1	Type de sécurité de la commande
0x1F43-0x1F44	8004-8005	_	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur
0x1F45-0x1F46	8006-8007	_	INT32U	_	17039489 = nom de l'application utilisateur (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0081 dans le registre 8007)

Adresse	Registre	Unité	Туре	Plage	Description
					17039490 = emplacement de l'IMU (charge la valeur 0x0104 dans le registre 8006 et la valeur 0x0082 dans le registre 8007)
0x1F46	8008	_	INT16U	2048	2048
0x1F48	8009	-	CHAÎNE D'OCTETS	_	MSB = premier caractère du nom ou de l'emplacement de l'IMU LSB = deuxième caractère du nom ou de l'emplacement de l'IMU
0x1F49-0x1F5F	8010-8038	_	CHAÎNE D'OCTETS	-	Dépend de la longueur du nom ou de l'emplacement de l'IMU et se termine par le caractère NULL 0x00

Définir la durée de validité des données

Cette commande permet de définir la durée de validité des données des jeux de données standard et hérités.

La durée de validité des données peut être lue dans un registre Durée de validité des données, page 254.

Pour définir la durée de validité des données, configurez les registres de commande comme suit :

Adresse	Registre	Unité	Туре	Plage	Description
0x1F3F	8000	_	INT16U	41868	Code de commande = 41868
0x1F40	8001	_	INT16U	12	Nombre de paramètres (octets) = 12
0x1F41	8002	_	INT16U	8705	Destination = 8705 (0x2201)
0x1F42	8003	_	INT16U	1	Type de sécurité de la commande
0x1F43-0x1F44	8004-8005	-	CHAÎNE D'OCTETS	_	Mot de passe de la commande : Mot de passe du profil utilisateur Administrateur, Services, Ingénieur ou Opérateur
0x1F45	8006	s	INT16U	5-300 (par incréments de 5 s)	Durée de validité des données Réglage d'usine : 10 s

Annexes

Contenu de cette partie

Références croisées des registres Modbus pour les disjoncteurs ComPacT	
NS	264

Introduction

L'annexes répertorie les registres Modbus par ordre croissant, avec des références croisées vers les pages correspondantes du guide.

Références croisées des registres Modbus pour les disjoncteurs ComPacT NS

Contenu de ce chapitre

Références croisées des registres Modbus pour les disjoncteurs ComPacT	
NS	265

Présentation

Le tableau des références croisées fournit la liste des registres Modbus par ordre croissant, avec des références croisées vers les pages correspondantes du guide.

Références croisées des registres Modbus pour les disjoncteurs ComPacT NS

Description générale

Le tableau ci-dessous montre les références croisées aux registres Modbus utilisées par les modules de communication. Les registres sont énumérés par ordre croissant.

Tableau des références croisées

Adresse	Registre	Module	Description	Page
0x0095–0x009B	150–156	Module BCM ULP	Historique des déclenchements	Historique des déclenchements, page 189
0x0202	515	Module BCM ULP	Identification du produit	Identification du produit, page 180
0x0215-0x021E	534-543	Module BCM ULP	Identifiant du module BCM ULP	Identifiant du module BCM ULP, page 180
0x0229-0x022A	554-555	Module BCM ULP	Compteurs du module BCM ULP	Compteurs du module BCM ULP, page 187
0x0240	577	Module BCM ULP	Version du firmware	Version de firmware du module BCM ULP, page 180
0x0243-0x0244	580-581	Module BCM ULP	Seuils des compteurs	Seuils des compteurs, page 187
0x0289-0x028A	650-651	Module BCM ULP	Cause de déclenchement	Cause de déclenchement, page 181
0x0291–0x0292	658-659	Module BCM ULP	Inhibition de la commande de fermeture	Inhibition de la commande de fermeture, page 182
0x0293	660	Module BCM ULP	Mode local/à distance	Mode de commande locale/à distance, page 182
0x0294	661	Module BCM ULP	Etat du disjoncteur	Etat du disjoncteur, page 182
0x0295-0x0298	662-665	Module BCM ULP	Compteurs de changements d'état du disjoncteur	Compteurs de changements d'état du disjoncteur, page 187
0x029D	670	Module BCM ULP	Mode Auto/Manu	Auto/Manu, page 183
0x029E-0x02A0	671-673	Module BCM ULP	Date du dernier actionnement de l'auxiliaire MX	Date du dernier événement, page 186
0x02A1	674	Module BCM ULP	Compteur d'actionnements MX	Compteurs de déclenchements MX et XF, page 188
0x02A2	675	Module BCM ULP	Date du dernier actionnement de l'auxiliaire XF	Date du dernier événement, page 186
0x02A5	678	Module BCM ULP	Compteur d'actionnements XF	Compteurs de déclenchements MX et XF, page 188
0x02A6-0x02A9	679-682	Module BCM ULP	Date actuelle du module BCM ULP	Date du dernier événement, page 186

Adresse	Registre	Module	Description	Page
0x02AB-0x02BD	684-702	Module BCM ULP	Date du dernier événement	Date du dernier événement, page 186
0x031F	800	Module BCM ULP	Activation du jeu de données hérité	Activation du jeu de données hérité, page 183
0x0325	806	Module BCM ULP	Paramètre de communication	Paramètre de communication, page 184
0x0326-0x032B	807-812	Module BCM ULP	Réglage de la réduction de la consommation d'énergie (ERMS)	Réglage de la réduction de la consommation d'énergie (ERMS), page 184
0x032C	813	Module BCM ULP	Contact wear	Usure du contact, page 185
0x03E7-0x03F6	1000-1015	Déclencheur MicroLogic	Tension et déséquilibre des tensions (mesures en temps réel)	Tension, page 118
0x03F7-0x0407	1016-1032	Déclencheur MicroLogic	Courant et déséquilibre des courants (mesures en temps réel)	Courant, page 119
0x0409-0x0414	1034-1045	Déclencheur MicroLogic	Puissance active, réactive et apparente (mesures en temps réel)	Puissance active, page 120
0x0415-0x041C	1046-1053	Déclencheur MicroLogic	Facteur de puissance et facteur de puissance fondamentale (mesures en temps réel)	Facteur de puissance, page 121
0x041D	1054	Déclencheur MicroLogic	Fréquence (mesures en temps réel)	Fréquence, page 121
0x0513-0x0522	1300-1315	Déclencheur MicroLogic	Tension (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0523-0x0533	1316-1332	Déclencheur MicroLogic	Courant (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0535-0x0540	1334-1345	Déclencheur MicroLogic	Puissance active, réactive et apparente (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0541-0x0548	1346-1353	Déclencheur MicroLogic	Facteur de puissance (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0549-0x054A	1354-1355	Déclencheur MicroLogic	Fréquence (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x054B-0x0551	1356-1362	Déclencheur MicroLogic	Tension de la fondamentale (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0557–0x055B	1368-1372	Déclencheur MicroLogic	Courant de la fondamentale (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x055F-0x0562	1376-1379	Déclencheur MicroLogic	Puissance active de la fondamentale (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0563-0x0566	1380-1383	Déclencheur MicroLogic	Puissance réactive de la fondamentale (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0567-0x056A	1384-1387	Déclencheur MicroLogic	Puissance apparente de la fondamentale (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x056B-0x056E	1388-1391	Déclencheur MicroLogic	Puissance de distorsion (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x056–0x0578	1392-1401	Déclencheur MicroLogic	Distorsion harmonique totale (THD) en fonction de la fondamentale (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122

Adresse	Registre	Module	Description	Page
0x0579–0x0582	1402-1411	Déclencheur MicroLogic	Distorsion harmonique totale (THD) en fonction de la valeur efficace (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0583-0x0585	1412-1414	Déclencheur MicroLogic	Déphasage entre tension et courant (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0586-0x0589	1415-1418	Déclencheur MicroLogic	Facteur K (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x058A-0x0593	1419-1428	Déclencheur MicroLogic	Facteur de crête (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x0598-0x059A	1433-1435	Déclencheur MicroLogic	Déphasage entre tensions (minimum de la mesure en temps réel)	Minimum des mesures en temps réel, page 122
0x063F-0x064E	1600-1615	Déclencheur MicroLogic	Tension (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x064F-0x065F	1616-1632	Déclencheur MicroLogic	Courant (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x0661-0x066C	1634-1645	Déclencheur MicroLogic	Puissance active, réactive et apparente (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x066D-0x0674	1646-1653	Déclencheur MicroLogic	Facteur de puissance (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x0675-0x0676	1654-1655	Déclencheur MicroLogic	Fréquence (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x0677–0x067D	1656-1662	Déclencheur MicroLogic	Tension de la fondamentale (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x0683-0x0687	1668-1672	Déclencheur MicroLogic	Courant de la fondamentale (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x068B-0x068E	1676-1679	Déclencheur MicroLogic	Puissance active de la fondamentale (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x068F-0x0692	1680-1683	Déclencheur MicroLogic	Puissance réactive de la fondamentale (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x0693-0x0696	1684-1687	Déclencheur MicroLogic	Puissance apparente de la fondamentale (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x0697-0x069A	1688-1691	Déclencheur MicroLogic	Puissance de distorsion (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x069B-0x06A4	1692-1701	Déclencheur MicroLogic	Distorsion harmonique totale (THD) en fonction de la fondamentale (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x06A5-0x06AE	1702-1711	Déclencheur MicroLogic	Distorsion harmonique totale (THD) en fonction de la valeur efficace (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x06AF-0x06B1	1712-1714	Déclencheur MicroLogic	Déphasage entre tension et courant (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x06B2-0x06B5	1715-1718	Déclencheur MicroLogic	Facteur K (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x06B6-0x06BF	1719-1728	Déclencheur MicroLogic	Facteur de crête (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122

Adresse	Registre	Module	Description	Page
0x06C4-0x06C6	1733-1735	Déclencheur MicroLogic	Déphasage entre tensions (maximum de la mesure en temps réel)	Maximum des mesures en temps réel, page 122
0x07CF-0x07EA	2000-2027	Déclencheur MicroLogic	Mesures de l'énergie	Mesures de l'énergie, page 124
0x0897-0x08C0	2200-2241	Déclencheur MicroLogic	Mesures de la demande	Demande de courant, page 125
0x0BB7-0x0BF7	3000-3064	Déclencheur MicroLogic	Informations horodatées	Informations horodatées, page 156
0x0CE6-0x0CEF	3303-3312	Déclencheur MicroLogic	Identification du gestionnaire de mesure	Identification du gestionnaire de mesure, page 128
0x0CF1	3314	Déclencheur MicroLogic	System type	Type de système, page 152
0x0CF3	3316	Déclencheur MicroLogic	Signe de la puissance	Signe de la puissance, page 152
0x0CF4	3317	Déclencheur MicroLogic	Signe de la puissance réactive	Signe de la puissance réactive, page 153
0x0CF5	3318	Déclencheur MicroLogic	Signe du facteur de puissance	Signe du facteur de puissance, page 153
0x0CFB	3324	Déclencheur MicroLogic	Mode d'accumulation d'énergie	Mode d'accumulation d'énergie, page 153
0x0D16-0x0D1A	3351-3355	Déclencheur MicroLogic	Temps de demande	Temps de demande, page 154
0x0EE7	3816	Déclencheur MicroLogic	Identification du produit (avec le gestionnaire de mesure)	Identification du produit, page 128
0x21FB-0x21FE	8700-8703	Déclencheur MicroLogic	Numéro de série	Numéro de série, page 128
0x2204	8709	Déclencheur MicroLogic	Version du matériel	Version du matériel, page 128
0x2205	8710	Déclencheur MicroLogic	Version du firmware	Version du firmware, page 128
0x220B	8716	Déclencheur MicroLogic	Identification du produit (avec le gestionnaire de protection)	Identification du produit, page 128
0x2223	8740	Déclencheur MicroLogic	Type de protection	Type de protection, page 129
0x2224	8741	Déclencheur MicroLogic	Type de mesure (A, E, P)	Type de mesure, page 129
0x2225	8742	Déclencheur MicroLogic	Calibreur long retard	Calibreur long retard, page 129
222x0D	8750	Déclencheur MicroLogic	Courant nominal	Courant nominal, page 160
0x2230	8753	Déclencheur MicroLogic	Paramètres de protection du neutre	Paramètres de la protection du neutre, page 138
0x2231–0x223A	8754-8763	Déclencheur MicroLogic	Protection long retard	Paramètres de la protection Long retard, page 138
0x223B-0x2244	8764-8773	Déclencheur MicroLogic	Protection court retard	Paramètres de la protection Court retard, page 138
0x2245–0x224E	8774-8783	Déclencheur MicroLogic	Protection instantanée	Paramètres de la protection Instantanée, page 139
0x224F-0x2258	8784-8793	Déclencheur MicroLogic	Protection contre les défauts à la terre	Paramètres de la protection Terre, page 139

Adresse	Registre	Module	Description	Page
0x2259-0x2262	8794-8803	Déclencheur MicroLogic	Protection différentielle (bloc Vigi)	Paramètres de la protection différentielle (bloc Vigi), page 140
0x2263-0x2289	8804-8842	Déclencheur MicroLogic	Mesures du gestionnaire de protection	Mesures du gestionnaire de protection, page 160
0x228A	8843	Déclencheur MicroLogic	Etat de la batterie	État de la batterie, page 161
0x229D-0x229F	8862-8864	Déclencheur MicroLogic	Etat de la protection	Etat de la protection, page 131
0x22A0-0x22A1	8865-8866	Déclencheur MicroLogic	Temps restant jusqu'au déclenchement de la protection Long retard	Temps restant jusqu'au déclenchement de la protection Long retard, page 161
0x22A7	8872	Déclencheur MicroLogic	Rotation des phases	Rotation des phases, page 162
0x2327-0x2372	9000-9075	Déclencheur MicroLogic	Informations horodatées	Informations horodatées, page 156
0x238B-0x2452	9100-9299	Déclencheur MicroLogic	Historique des déclenchements	Historique des déclenchements, page 134
0x2583-0x258C	9604-9613	Déclencheur MicroLogic	Identification du gestionnaire de protection	Identification du gestionnaire de protection, page 130
0x258D	9614	Déclencheur MicroLogic	Langue	Langue, page 162
0x258E	9615	Déclencheur MicroLogic	Fréquence nominale	Fréquence nominale, page 162
0x258F-0x2590	9616-9617	Déclencheur MicroLogic	Tension nominale Vn	Tension nominale, page 155
0x2591	9618	Déclencheur MicroLogic	Type de disjoncteur	Type de disjoncteur, page 130
0x259C-0x25A5	9629-9638	Déclencheur MicroLogic	Alarme de défaut à la terre	Alarme de défaut à la terre, page 141
0x25A6-0x25AF	9639-9648	Déclencheur MicroLogic	Alarme de défaut de protection différentielle	Alarme de protection différentielle, page 141
0x25B0-0x25B9	9649-9658	Déclencheur MicroLogic	Protection contre les déséquilibres des courants	Protection contre les déséquilibres des courants, page 142
0x25BA-0x25C3	9659-9668	Déclencheur MicroLogic	Protection contre le courant maximum sur la phase 1	Protection contre le courant maximum sur la phase 1, page 142
0x25C4-0x25CD	9669-9678	Déclencheur MicroLogic	Protection contre le courant maximum sur la phase 2	Protection contre le courant maximum sur la phase 2, page 143
0x25CE-0x25D7	9679-9688	Déclencheur MicroLogic	Protection contre le courant maximum sur la phase 3	Protection contre le courant maximum sur la phase 3, page 144
0x25D8-0x25E1	9689-9698	Déclencheur MicroLogic	Protection contre le courant maximum sur le neutre	Protection contre le courant maximum sur le neutre, page 144
0x25E2-0x25EB	9699-9708	Déclencheur MicroLogic	Protection contre la tension minimum	Protection contre la tension minimum, page 145
0x25EC-0x25F5	9709-9718	Déclencheur MicroLogic	Protection contre la tension maximum	Protection contre la tension maximum, page 146

Adresse	Registre	Module	Description	Page
0x25F6-0x25FF	9719-9728	Déclencheur MicroLogic	Protection contre les déséquilibres des tensions	Protection contre les déséquilibres des tensions, page 147
0x260A-0x2613	9739-9748	Déclencheur MicroLogic	Protection contre la puissance déwattée	Protection contre la puissance de retour, page 147
0x2614-0x261D	9749-9758	Déclencheur MicroLogic	Protection contre la fréquence minimum	Protection contre la fréquence minimum, page 148
0x261E-0x2627	9759-9768	Déclencheur MicroLogic	Protection contre la fréquence maximum	Protection contre la fréquence maximum, page 149
0x2628-0x2631	9769-9778	Déclencheur MicroLogic	Alarme de rotation de phase	Alarme de rotation de phase, page 149
0x2632-0x263B	9779-9788	Déclencheur MicroLogic	Délestage de charge et reconnexion en fonction du courant	Délestage de charge et reconnexion en fonction du courant, page 150
0x263C-0x2645	9789-9798	Déclencheur MicroLogic	Délestage de charge et reconnexion en fonction de la puissance	Délestage de charge et reconnexion en fonction de la puissance, page 151
0x2675-0x267C	9846-9853	Déclencheur MicroLogic	Caractéristiques du disjoncteur	Caractéristiques du disjoncteur, page 130
0x27FF-0x2826	10240-10279	Interface IFE	Paramètres réseau IP	Paramètres réseau IP, page 257
0x2DFF-0x2E06	11776–11783	Interface IFM	Version du firmware	Version logicielle de l'interface IFM , page 240
0x2DFF-0x2E06	11776–11783	Interface IFE	Version du firmware	Version logicielle de l'interface IFE, page 252
0x2E07-0x2E0C	11784-11789	Interface IFM	Numéro de série	Numéro de série de l'interface IFM TRV00210 ou STRV00210, page 240
0x2E07-0x2E0C	11784-11789	Interface IFE	Version du matériel	Version matérielle de l'interface IFE, page 252
0x2E18-0x2E2E	11801-11823	Interface IFM	Nom de l'IMU	Identification de l'IMU, page 242
0x2E18-0x2E2E	11801-11823	Interface IFE	Nom de l'IMU	Identification de l'IMU, page 252
0x2E45-0x2E5B	11846-11868	Interface IFM	Emplacement de l'IMU	Identification de l'IMU, page 242
0x2E45-0x2E5B	11846-11868	Interface IFE	Emplacement de l'IMU	Identification de l'IMU, page 252
0x2E72	11891	Interface IFM	Position du commutateur de verrouillage	Position du commutateur de verrouillage, page 243
0x2E72	11891	Interface IFE	Position du commutateur de verrouillage	Position du commutateur de verrouillage, page 253
0x2E73-0x2E7A	11892-11899	Interface IFE	Date et heure actuelles	Date et heure actuelles, page 253
0x2E7C	11901	Interface IFM	Identification du produit	Identification du produit, page 241
0x2E7C	11901	Interface IFE	Identification du produit	Identification du produit, page 253

Adresse	Registre	Module	Description	Page
0x2E7D-0x02E7F	11902-11904	Interface IFE	Adresse MAC de l'interface IFE	Adresse MAC du serveur IFE, page 254
0x2E89-0x2E8C	11914-11917	Interface IFE	Date et heure de fabrication	Date et heure de fabrication, page 255
0x2E91-0x02E96	11922-11931	Interface IFE	Numéro de série	Numéro de série de l'interface IFE, page 255
0x2EDF-0x2F84	12000-12165	Interface IFM	Jeu de données hérité	Registres communs du jeu de données hérité, page 104
0x2EDF-0x2F84	12000-12165	Interface IFE	Jeu de données hérité	Registres communs du jeu de données hérité, page 104
0x306E	12399	Interface IFM	Etat de la mesure de vitesse automatique	Etat de la mesure de vitesse automatique, page 243
0x306F	12400	Interface IFM	Adresse Modbus de l'interface IFM	Adresse Modbus de l'interface IFM, page 243
0x306F-0x3072	12400-12403	Interface IFE	Paramètres Modbus de l'interface IFE	Paramètres Modbus du serveur IFE, page 255
0x3070	12401	Interface IFM	Parité Modbus	Parité Modbus, page 243
0x3071	12402	Interface IFM	Débit Modbus en bauds	Débit Modbus en bauds, page 244
0x3072	12403	Interface IFM	Nombre de bits d'arrêt	Nombre de bits d'arrêt, page 244
0x35FF-0x3668	13824-13929	Module IO	Entrée analogique du module IO 1	Entrées analogiques, page 199
0x3669-0x3848	13930-14409	Module IO	Entrée numérique du module IO 1	Entrées numériques, page 201
0x3849-0x38FC	14410-14589	Module IO	Sortie numérique du module IO 1	Sorties numériques, page 204
0x38FD-0x3902	14590-14595	Module IO	Paramètre matériel du module IO 1	Paramètres du matériel, page 206
0x3905-0x3908	14598-14601	Module IO	Etat des entrées et sorties numériques du module IO 1	Etat des entrées et des sorties numériques, page 208
0x392F-0x3982	14640-14723	Module IO	Identification du module IO 1	Identification du module IO, page 209
0x3989-0x39A4	14730-14759	Module IO	Etat de l'alarme du module IO 1	Etat des alarmes, page 212
0x3BC3-0x3BE0	15300-15329	Module IO	Gestion de châssis du module IO 1	Gestion de châssis, page 216
0x3BE1-0x3BFE	15330-15359	Module IO	Gestion de racks du module IO 1	Gestion de racks, page 217
0x3C27-3C30	15400-15409	Module IO	Contrôle de l'éclairage du module IO 1	Commande d'éclairage, page 217
0x3C31-3EEC	15410-16109	Module IO	Contrôle de la charge du module IO 1	Contrôle de charge, page 218
0x41B8-0x4220	16824-16929	Module IO	Entrée analogique du module IO 2	Entrées analogiques, page 199
0x4221-0x4400	16930-17409	Module IO	Entrée numérique du module IO 2	Entrées numériques, page 201
0x4401-0x44B4	17410-17589	Module IO	Sortie numérique du module IO 2	Sorties numériques, page 204

Adresse	Registre	Module	Description	Page
0x44B5-0x44BA	17590-17595	Module IO	Paramètre matériel du module IO 2	Paramètres du matériel, page 206
0x44BD-0x44C0	17598-17601	Module IO	Etat des entrées et sorties numériques du module IO 2	Etat des entrées et des sorties numériques, page 208
0x44E7-0x453A	17640-17723	Module IO	Identification du module IO 2	Identification du module IO, page 209
0x4541-0x455E	17730-17759	Module IO	Etat de l'alarme du module IO 2	Etat des alarmes, page 212
0x477B-0x4798	18300–18329	Module IO	Gestion de châssis du module IO 2	Gestion de châssis, page 216
0x4799-0x47B6	18330–18359	Module IO	Gestion des racks du module IO 2	Gestion de racks, page 217
0x749C	29853	Déclencheur MicroLogic	Compteur de taux d'usure	Compteur de taux d'usure, page 159
0x74B7-0x74BE	29880-29887	Déclencheur MicroLogic	Compteurs des profils de charge	Compteurs des profils de charge, page 159
0x7CFF-0x7E4E	32000–32341	Interface IFE	Jeu de données standard	Registres communs du jeu de données standard, page 83

Schneider Electric 35, rue Joseph Monier 92500 Rueil-Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

Les normes, spécifications et conceptions pouvant changer de temps à autre, veuillez demander la confirmation des informations figurant dans cette publication.

© 2022 – Schneider Electric. Tous droits réservés.