Premium et Atrium sous EcoStruxure™ Control Expert

Processeurs, racks et alimentations Manuel de mise en œuvre

(Traduction du document original anglais)

12/2018

Le présent document comprend des descriptions générales et/ou des caractéristiques techniques des produits mentionnés. Il ne peut pas être utilisé pour définir ou déterminer l'adéquation ou la fiabilité de ces produits pour des applications utilisateur spécifiques. Il incombe à chaque utilisateur ou intégrateur de réaliser l'analyse de risques complète et appropriée, l'évaluation et le test des produits pour ce qui est de l'application à utiliser et de l'exécution de cette application. Ni la société Schneider Electric ni aucune de ses sociétés affiliées ou filiales ne peuvent être tenues pour responsables de la mauvaise utilisation des informations contenues dans le présent document. Si vous avez des suggestions, des améliorations ou des corrections à apporter à cette publication, veuillez nous en informer.

Vous acceptez de ne pas reproduire, excepté pour votre propre usage à titre non commercial, tout ou partie de ce document et sur quelque support que ce soit sans l'accord écrit de Schneider Electric. Vous acceptez également de ne pas créer de liens hypertextes vers ce document ou son contenu. Schneider Electric ne concède aucun droit ni licence pour l'utilisation personnelle et non commerciale du document ou de son contenu, sinon une licence non exclusive pour une consultation « en l'état », à vos propres risques. Tous les autres droits sont réservés.

Toutes les réglementations locales, régionales et nationales pertinentes doivent être respectées lors de l'installation et de l'utilisation de ce produit. Pour des raisons de sécurité et afin de garantir la conformité aux données système documentées, seul le fabricant est habilité à effectuer des réparations sur les composants.

Lorsque des équipements sont utilisés pour des applications présentant des exigences techniques de sécurité, suivez les instructions appropriées.

La non-utilisation du logiciel Schneider Electric ou d'un logiciel approuvé avec nos produits matériels peut entraîner des blessures, des dommages ou un fonctionnement incorrect.

Le non-respect de cette consigne peut entraîner des lésions corporelles ou des dommages matériels.

© 2018 Schneider Electric. Tous droits réservés.

Table des matières

	Consignes de sécurité	11
	A propos de ce manuel	13
Partie I	Stations automate Premium et Atrium	15
Chapitre 1	Présentation des stations automates Premium et Atrium	17
•	Station automate Premium	18
	Station automate Atrium	20
Chapitre 2	Présentation générale des composants d'une station	
	automate	21
	Présentation générale des processeurs Premium	22
	Présentation générale des processeurs Atrium	24
	Présentation générale des racks	26
	Présentation générale des modules d'alimentation TSX PSY	27
	Présentation générale des alimentations process et AS-i	28
	Présentation générale du module d'extension du rack	30
	Présentation générale des modules d'entrées/sorties	31
	Présentation générale des modules de comptage TSX CTY/CCY	33
	Présentation des modules commande d'axes	34
	Présentation générale des modules de commande pas à pas	35
	Présentation générale de la communication	36
	Présentation générale du module interface bus AS-i : TSX SAY 100 .	40
	Présentation générale du module de pesage TSX ISPY	41
	Présentation générale du module de surveillance d'arrêt d'urgence.	42
	Présentation générale du module de ventilation TSX FAN	43
Chapitre 3	Présentation générale des différentes configurations	
	d'une station automate	45
	Différents types de stations automates Premium	46
	Les différents types de station automate avec processeur Atrium	50
Chapitre 4	Présentation générale des réseaux d'automates	53
	Présentation générale du bus Modbus	54
	Présentation générale d'un réseau Modbus Plus	55
	Présentation générale d'un réseau Fipway	56
	Présentation générale d'un réseau Ethernet	57
	Présentation générale de la communication par modem	58
	Présentation générale du Bus Uni-Telway	59
	Présentation générale du bus de terrain Fipio	60

35010525 12/2018

	Présentation générale du bus de terrain CANopen
	Présentation du bus AS-i
	Présentation générale du bus de terrain Profibus DP
	Présentation générale du bus de terrain INTERBUS
	Présentation du réseau Jnet
Chapitre 5	Normes et conditions de service
•	Normes et Certifications
	Conditions de service et prescriptions liées à l'environnement
	Traitement de protection des automates Premium
Partie II	Processeurs Premium TSX P57/TSX H57
Chapitre 6	Processeurs TSX P57/TSX H57 : présentation
•	Présentation générale
	Description physique des processeurs TSX P57/TSX H57
	Horodateur
	Catalogue des processeurs TSX 57
	Taille des données sur automates Premium et Atrium
Chapitre 7	Processeurs TSX P57/TSX H57: installation
	Positionnement du module processeur
	Comment monter les modules processeur
	Installation des modules à côté des processeurs TSX P57
	0244/104/154
	Cartes mémoire standard pour automates Cartes mémoire de type application\fichiers et de type stockage de
	fichiers
	Traitement sur insertion/extraction d'une carte d'extension mémoire
	PCMCIA sur automate Premium
	Montage/Démontage des cartes d'extension mémoire PCMCIA sur
Ol!t O	processeur TSX P57/TSX H57
Chapitre 8	Processeurs TSX P57/TSX H57 : diagnostic
	Visualisation
	Précautions à prendre lors du remplacement d'un processeur TSX P57/TSX H57
	Changement de la pile de sauvegarde mémoire RAM des processeurs
	TSX P57/TSX H57
	Changement des piles d'une carte mémoire PCMCIA
	Durées de vie des piles pour carte mémoire PCMCIA
	Effet de l'action du bouton RESET du processeur

	Recherche des défauts à partir des voyants d'état du processeur	135
	Défauts non bloquants	136
	Défauts bloquants	138
	Défauts processeurs ou système	139
Chapitre 9	Processeurs TSX P57 0244	141
•	Caractéristiques générales des processeurs TSX P57 0244	141
Chapitre 10	Processeur TSX P57 104	143
•	Caractéristiques générales des processeurs TSX P57 104	143
Chapitre 11	Processeur TSX P57 154	145
•	Caractéristiques générales des processeurs TSX P57 154	145
Chapitre 12	Processeur TSX P57 1634	147
•	Caractéristiques générales des processeurs TSX P57 1634	147
Chapitre 13	Processeur TSX P57 204	149
•	Caractéristiques générales des processeurs TSX P57 204	149
Chapitre 14	Processeur TSX P57 254	151
•	Caractéristiques générales des processeurs TSX P57 254	151
Chapitre 15	Processeur TSX P57 2634	153
-	Caractéristiques générales des processeurs TSX P57 2634	153
Chapitre 16	Processeur TSX P57 304	155
-	Caractéristiques générales des processeurs TSX P57 304	155
Chapitre 17	Processeur TSX P57 354	157
-	Caractéristiques générales des processeurs TSX P57 354	157
Chapitre 18	Processeur TSX P57 3634	159
-	Caractéristiques générales des processeurs TSX P57 3634	159
Chapitre 19	Processeur TSX P57 454	161
	Caractéristiques générales des processeurs TSX P57 454	161
Chapitre 20	Processeur TSX P57 4634	163
	Caractéristiques générales des processeurs TSX P57 4634	163
Chapitre 21	Processeur TSX P57 554	165
	Caractéristiques générales des processeurs TSX P57 554	165
Chapitre 22	Processeur TSX P57 5634	167
	Caractéristiques générales des processeurs TSX P57 5634	167
Chapitre 23	Processeur TSX P57 6634	169
	Caractéristiques générales des processeurs TSX P57 6634	169
Chapitre 24	Processeurs TSX H57 24M	171
	Caractéristiques générales des processeurs TSX H57 24M	171
Chapitre 25	Processeurs TSX H57 44M	173
	Caractéristiques générales des processeurs TSX H57 44M	173

Chapitre 26	Processeur Premium TSX P57/TSX H57 : caractéris-
·	tiques générales
	Caractéristiques des processeurs Premium
	Caractéristiques électriques des processeurs TSX P57/TSX H57 et des équipements connectables et intégrables
Chapitre 27	Performances des processeurs
	Temps de cycle de tâche MAST : introduction
	Temps de cycle de tâche MAST : traitement du programme Ttp
	Temps de cycle de tâche MAST : traitement interne des entrées et
	sorties
	Exemple de calcul des temps de cycle d'une tâche MAST dans les conditions ci-après
	Temps de cycle de tâche FAST
	Temps de réponse sur événement
Partie III	Processeurs Atrium
Chapitre 28	Processeurs Atrium : présentation
	Présentation générale
	Description physique des processeurs Atrium
	Horodateur
	Dimensions des cartes processeurs Atrium
	Eléments standard constitutifs d'une carte Atrium
	Eléments constitutifs optionnels d'une carte Atrium
	Catalogue des processeurs Atrium
Chapitre 29	Processeurs Atrium : installation
	Précautions à prendre lors de l'installation
	Installation du processeur Atrium dans le PC
	Installation logique du processeur Atrium sur le bus X
	Opérations préliminaires avant l'installation
	Comment configurer l'adresse du processeur Atrium sur le bus X
	Comment configurer l'adresse d'E/S de base du processeur sur le bus PCI
	Comment installer la carte processeur Atrium dans le PC
	Installation de la carte d'alimentation 24 V
	Intégration du processeur Atrium à l'intérieur d'un segment de bus X.
	Comment monter/démonter la carte d'extension mémoire sur le processeur Atrium

35010525 12/2018

	Cartes mémoires pour processeurs Atrium
	Montage/démontage des cartes de communication sur le processeur
	Atrium
	Traitement sur insertion/extraction d'une carte mémoire PCMCIA sur
	un automate Atrium
Chanitra 20	
Chapitre 30	Processeurs Atrium : Diagnostic
	Changement de la pile de sauvegarde mémoire RAM avec Atrium Effet de l'action du bouton RESET du processeur
	·
	Comportement du processeur Atrium suite à une action sur le PC
01	Recherche des défauts à partir des voyants d'état du processeur
Chapitre 31	Processeur TSX PCI 57 204
O OO	Caractéristiques générales des processeurs TSX PCI 57 204
Chapitre 32	Processeur TSX PCI 57 354
	Caractéristiques générales du processeur TSX PCI 57 354
Chapitre 33	Processeurs Atrium : caractéristiques générales
	Caractéristiques des processeurs Atrium
	Caractéristique électriques des processeurs Atrium et des
	équipements connectables et intrégrable
	Performances des processeurs
Dordio IV	·
Partie IV	
Chapitre 34	Alimentations TSX PSY: présentation
	Présentation générale
	Modules d'alimentation : description
	Catalogue des alimentations TSX PSY
Chapitre 35	Alimentations TSX PSY: installation
	Installation/montage des alimentations TSX PSY
	Règles de raccordement des alimentations TSX PSY
	Raccordement de modules d'alimentation pour réseau à courant
	alternatif
	Raccordement de modules d'alimentation à courant continu à partir
	d'un réseau à courant continu flottant 24 ou 48 VCC
	d'un réseau à courant alternatif
	Asservissement des alimentations capteurs et pré-actionneurs
	Définition d'organes de protection au début d'une ligne

Chapitre 36	Alimentations TSX PSY: diagnostics
	-
	Pile de sauvegarde sur les modules d'alimentation TSX PSY
	Coupure de l'alimentation sur rack, autre que le rack 0
	Effet de l'action du bouton RESET sur un module d'alimentation
Chapitre 37	Alimentations TSX PSY: fonctions auxiliaires
	Relais d'alarme sur modules d'alimentation TSX PSY
	Caractéristiques du contact relais alarme
Chapitre 38	Alimentations TSX PSY: bilan de consommation et de
	puissance
	Bilan de consommation pour choix du module d'alimentation
	Bilan de consommation
	Bilan de puissance
Chapitre 39	Module d'alimentation TSX PSY 2600
	Caractéristiques du module alimentation TSX PSY 2600
Chapitre 40	Module d'alimentation TSX PSY 5500
	Caractéristiques du module alimentation TSX PSY 5500
Chapitre 41	Module d'alimentation TSX PSY 8500
-	Caractéristiques du module alimentation TSX PSY 8500
Chapitre 42	Module d'alimentation TSX PSY 1610
•	Caractéristiques du module alimentation TSX PSY 1610
Chapitre 43	Module d'alimentation TSX PSY 3610
•	Caractéristiques du module alimentation TSX PSY 3610
Chapitre 44	Module d'alimentation TSX PSY 5520
•	Caractéristiques du module alimentation TSX PSY 5520
Partie V	Alimentations process
Chapitre 45	Alimentations Process : présentation
	Présentation générale des alimentations process
	Description physique du bornier TBX SUP 10
	Description physique du module d'alimentation TSX SUP 1011
	Description physique des modules d'alimentation TSX 1021/1051

	Description du module d'alimentation TSX SUP 1101	32
	Description physique de la platine support	32
	Catalogue des alimentations process 24 VCC	32
	Alimentations Process : fonctions auxilliaires	32
Chapitre 46	Alimentations Process : installation	32
	Encombrement/montage des alimentations Process	33
	Encombrement/montage/raccordements TBX SUP 10	33
	Encombrement/montage des alimentations TSX SUP 1101	33
	Récapitulatif des modes de fixations	33
Chapitre 47	Alimentations process : raccordements	33
•	Raccordement d'alimentations TSX SUP 1011/1021	34
	Raccordement d'alimentations TSX SUP 1051	34
	Raccordement d'alimentations TSX SUP 1101	34
Chapitre 48	Caractéristiques des alimentations Process	34
•	Caractéristiques électriques des modules d'alimentation process : TBX	
	SUP 10 et TSX SUP 1011	34
	Caractéristiques électriques des modules d'alimentation process : TSX	35
	SUP 1021/1051/1101 Caractéristiques d'environnement	35
Partie VI	Racks TSX RKY standard et extensibles	35
	Présentation des racks standards/extensibles TSX RKY	35
Chapitre 49	Racks TSX RKY standard et extensibles	35
	Rack standard : description	36
	Rack extensible : description.	36
Chanitra EO	Racks TSX RKY standard et extensibles :	30
Chapitre 50		36
	installation/montage	36
	Montage et fixation de racks	37
	Connexion d'un rack TSX RKY à la terre	37:
Chanitra E1		37
Chapitre 51	TSX Racks RKY standard et extensibles : fonctions	
	Constitution d'une station automate avec processeur Premium	37
	Constitution d'une station automate avec processeur Atrium	37
	Adressage des racks d'une station automate	38
	Principe d'adressage de deux racks sur la même adresse	38
	Adresses modules	38
	Installation des alimentations, processeurs et autres modules	38

35010525 12/2018

Chapitre 52	Racks TSX RKY : accessoires
	Câble d'extension de bus X TSX CBY 1000
	Terminaison de ligne TSX TLYEX
	Positionnement des terminaisons de ligne sur une station disposant
	d'un processeur Premium
	Positionnement des terminaisons de ligne sur une station disposant
	d'un processeur Atrium
	TSX RKA 02, cache de protection pour les positions inoccupées
	Etiquetage
	Compatibilité avec le parc existant
Chapitre 53	Module de déport de bus X
	Module d'extension de bus X : introduction
	Module d'extension de rack : description physique
	Module de déport bus X : mise en oeuvre
	Module d'extension de bus X : Configuration
	Module d'extension de bus X : distances maximum en fonction des types de modules
	Modules d'extension de bus X : raccordements.
	Module de déport bus X : diagnostic
	Topologie d'une station automate avec module de déport
	Gestion d'une alimentation équipée d'un module d'extension de bus X
Chapitre 54	Module de ventilation
	Module de ventilation : présentation générale
	Module de ventilation : description physique
	Module de ventilation : catalogue
	Module de ventilation : dimensions
	Module de ventilation : montage
	Règles d'installation de racks équipés de modules de ventilation
	Module de ventilation : raccordements
	Module de ventilation : caractéristiques
Index	
HILLOGA	

Consignes de sécurité

Informations importantes

AVIS

Lisez attentivement ces instructions et examinez le matériel pour vous familiariser avec l'appareil avant de tenter de l'installer, de le faire fonctionner, de le réparer ou d'assurer sa maintenance. Les messages spéciaux suivants que vous trouverez dans cette documentation ou sur l'appareil ont pour but de vous mettre en garde contre des risques potentiels ou d'attirer votre attention sur des informations qui clarifient ou simplifient une procédure.

La présence de ce symbole sur une étiquette "Danger" ou "Avertissement" signale un risque d'électrocution qui provoquera des blessures physiques en cas de non-respect des consignes de sécurité.

Ce symbole est le symbole d'alerte de sécurité. Il vous avertit d'un risque de blessures corporelles. Respectez scrupuleusement les consignes de sécurité associées à ce symbole pour éviter de vous blesser ou de mettre votre vie en danger.

A DANGER

DANGER signale un risque qui, en cas de non-respect des consignes de sécurité, **provoque** la mort ou des blessures graves.

A AVERTISSEMENT

AVERTISSEMENT signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** la mort ou des blessures graves.

A ATTENTION

ATTENTION signale un risque qui, en cas de non-respect des consignes de sécurité, **peut provoquer** des blessures légères ou moyennement graves.

AVIS

AVIS indique des pratiques n'entraînant pas de risques corporels.

REMARQUE IMPORTANTE

L'installation, l'utilisation, la réparation et la maintenance des équipements électriques doivent être assurées par du personnel qualifié uniquement. Schneider Electric décline toute responsabilité quant aux conséquences de l'utilisation de ce matériel.

Une personne qualifiée est une personne disposant de compétences et de connaissances dans le domaine de la construction, du fonctionnement et de l'installation des équipements électriques, et ayant suivi une formation en sécurité leur permettant d'identifier et d'éviter les risques encourus.

A propos de ce manuel

Présentation

Objectif du document

Ce manuel décrit la mise en œuvre matérielle des automates Premium et Atrium et de leurs accessoires principaux.

Il est découpé en six parties :

- présentation générale des stations automates Premium et Atrium,
- processeur Premium TSX P57/TSX H57,
- processeurs Atrium TSX PCI 57.
- modules d'alimentation TSX PSY,
- modules d'alimentation Process.
- racks TSX RKY standard et extensibles.

Champ d'application

Cette documentation est applicable à EcoStruxure™ Control Expert 14.0 ou version ultérieure.

Les caractéristiques techniques des équipements décrits dans ce document sont également fournies en ligne. Pour accéder à ces informations en ligne :

Etape	Action
1	Accédez à la page d'accueil de Schneider Electric www.schneider-electric.com.
2	Dans la zone Search , saisissez la référence d'un produit ou le nom d'une gamme de produits. N'insérez pas d'espaces dans la référence ou la gamme de produits. Pour obtenir des informations sur un ensemble de modules similaires, utilisez des astérisques (*).
3	Si vous avez saisi une référence, accédez aux résultats de recherche Product Datasheets et cliquez sur la référence qui vous intéresse. Si vous avez saisi une gamme de produits, accédez aux résultats de recherche Product Ranges et cliquez sur la gamme de produits qui vous intéresse.
4	Si plusieurs références s'affichent dans les résultats de recherche Products , cliquez sur la référence qui vous intéresse.
5	Selon la taille de l'écran, vous serez peut-être amené à faire défiler la page pour consulter la fiche technique.
6	Pour enregistrer ou imprimer une fiche technique au format .pdf, cliquez sur Download XXX product datasheet.

Les caractéristiques présentées dans ce document devraient être identiques à celles fournies en ligne. Toutefois, en application de notre politique d'amélioration continue, nous pouvons être amenés à réviser le contenu du document afin de le rendre plus clair et plus précis. Si vous constatez une différence entre le document et les informations fournies en ligne, utilisez ces dernières en priorité.

Information spécifique au produit

A AVERTISSEMENT

FONCTIONNEMENT IMPREVU DE L'EQUIPEMENT

L'utilisation de ce produit requiert une expertise dans la conception et la programmation des systèmes d'automatisme. Seules les personnes avec l'expertise adéquate sont autorisées à programmer, installer, modifier et utiliser ce produit.

Respectez toutes les réglementations et normes de sécurité locales et nationales.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Partie I

Stations automate Premium et Atrium

Objet de cette partie

Cette partie a pour objectif de vous présenter une vue d'ensemble d'une station automate Premium TSX P57/TSX H57 et Atrium TSX PCI 57, les différents sous-ensembles pouvant la composer, ainsi que les réseaux et bus de terrain utilisés.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	Page
1	Présentation des stations automates Premium et Atrium	17
2	Présentation générale des composants d'une station automate	21
3	Présentation générale des différentes configurations d'une station automate	45
4	Présentation générale des réseaux d'automates	53
5	Normes et conditions de service	69

35010525 12/2018

Chapitre 1

Présentation des stations automates Premium et Atrium

Objet de ce chapitre

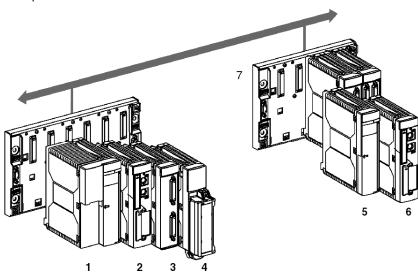
Ce chapitre a pour objectif de vous présenter une vue d'ensemble des stations automates TSX P57/TSX H57 et TSX PCI 57.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Station automate Premium	18
Station automate Atrium	20

Station automate Premium


Généralités

Les processeurs des plates-formes d'automatisme Premium TSX P57 gèrent l'ensemble d'une station automate qui est constituée à partir de modules d'entrées/de sorties « TOR »de modules d'entrées/de sorties analogiques et de modules métiers. Ils peuvent être répartis sur un ou plusieurs racks connectés au bus X ou au bus de terrain.

Les processeurs Premium TSX H57 sont dédiés aux applications de redondance d'UC. Un système de redondance d'UC Premium se compose de deux stations automates identiques répartis sur un ou plusieurs racks. L'un des deux automates sert d'automate primaire et l'autre d'automate redondant.

Illustration

Exemple de 2 stations automates Premium :

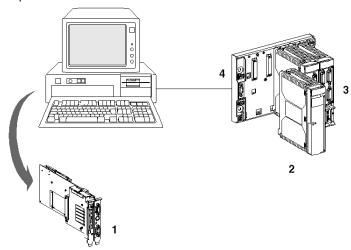
NOTE: Si le second rack ne contient pas un module processeur, il s'agit d'une **seule** station automate répartie sur 2 racks.

Tableau des repères

Description en fonction des repères du schéma ci-dessus :

Repère	Description
1	Module d'alimentation double format
2	Module processeur
3	Module de déport de bus X
4	Module d'entrées/de sorties
5	Module d'alimentation format standard
6	Module processeur
7	Rack TSX RKY

35010525 12/2018


Station automate Atrium

Généralités

Les coprocesseurs Atrium TSX PCI 57, s'intègrent dans un PC et gèrent l'ensemble d'une station automate constituée des mêmes modules d'entrées/sorties que les processeurs Premium (« Tout ou Rien », analogiques, métiers et communication), ces modules pouvant être répartis dans un ou plusieurs racks connectés sur le bus X.

Illustration

Exemple d'une station automate Atrium :

Tableau des repères

Description en fonction des repères du schéma ci-dessus :

Repère	Description
1	Coprocesseur
2	Alimentation
3	Modules d'entrées/sorties
4	Rack TSX RKY

Chapitre 2

Présentation générale des composants d'une station automate

Objet de ce chapitre

Ce chapitre a pour objectif de vous présenter d'une façon générale les différents composants qui peuvent constituer une station automate.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale des processeurs Premium	
Présentation générale des processeurs Atrium	24
Présentation générale des racks	
Présentation générale des modules d'alimentation TSX PSY	27
Présentation générale des alimentations process et AS-i	
Présentation générale du module d'extension du rack	
Présentation générale des modules d'entrées/sorties	
Présentation générale des modules de comptage TSX CTY/CCY	
Présentation des modules commande d'axes	
Présentation générale des modules de commande pas à pas	
Présentation générale de la communication	
Présentation générale du module interface bus AS-i : TSX SAY 100	
Présentation générale du module de pesage TSX ISPY	
Présentation générale du module de surveillance d'arrêt d'urgence	
Présentation générale du module de ventilation TSX FAN	

Présentation générale des processeurs Premium

Généralités

Chaque station automate est pourvue d'un processeur, choisi en fonction :

- de sa puissance de traitement (nombre d'E/S gérées)
- de sa capacité mémoire
- du type de traitement : séquentiel ou séquentiel + régulation

(Voir Processeurs Premium TSX P57/TSX H57, page 77).

Tableau des différents types de format de processeur :

Processeur	Illustration
Processeurs format standard : TSX P57 0244 TSX P57 104 TSX P57 154	
Processeurs double format : TSX P57 204 TSX P57 254 TSX P57 304 TSX P57 354 TSX P57 454	

Processeur	Illustration
Processeurs double format : TSX P57 1634 TSX P57 2634 TSX P57 3634 TSX P57 4634	
Processeurs double format : TSX P57 554 TSX P57 5634 TSX P57 6634 TSX H57 24M TSX H57 44M	

TSX P57 0244

Le processeur TSX P57 0244 est disponible en 3 versions :

- Version simple TSX P57 0244 avec :
 - o un processeur
 - o une carte PCMCIA CANopen TSX CPP 110
- Version configuration alternative, TSX P57 CA 0244 avec :
 - o un rack standard TSX RKY 6
 - o un processeur
 - o courant alternatif (100 240 VCA) TSX PSY 2600
 - o une carte PCMCIA CANopen TSX CPP 110
 - o un module de comptage TSX CTY 2A
- Version configuration continue, TSX P57 CD 0244 avec :
 - o un rack standard TSX RKY 6
 - o un processeur
 - o une alimentation continue (24 VCC) TSX PSY 1610
 - o une carte PCMCIA CANopen TSX CPP 110
 - o un module de comptage TSX CTY 2A

Présentation générale des processeurs Atrium

Généralités

Installés sur bus **PCI** d'un PC industriel ou de bureautique fonctionnant dans un environnement Windows 2000 ou Windows XP, ils permettent de piloter une station automate.

De plus, l'installation d'un pilote de communication permet une communication transparente entre le PC hôte et le processeur permettant ainsi de s'affranchir d'un terminal de programmation autre.

Il existe deux types de processeur Atrium :

- TSX PCI 57 204
- TSX PCI 57 354

Voir Processeurs Atrium, page 191.

Illustrations

Illustration d'un processeur TSX PCI 57 :

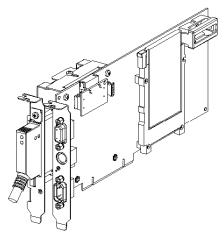
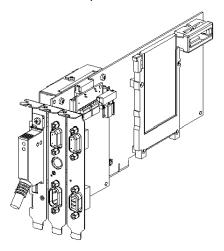
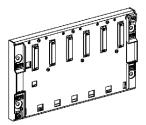



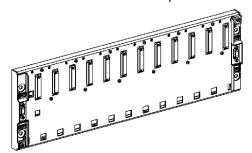
Illustration d'un processeur TSX PCI 57 avec alimentation 24 V optionnelle :

Présentation générale des racks

Généralités


Deux familles de racks sont proposées :

- Racks standards : 6, 8 et 12 positions
 Ils permettent de constituer une station automate limitée à un seul rack.
- Racks extensibles: 4, 6, 8 et 12 positions
 - Ils permettent de constituer une station automate qui peut comporter jusqu'à :
 - O 16 racks maximum si la station est constituée de racks 4, 6 ou 8 positions,
 - O 8 racks maximum si la station est constituée de racks 12 positions.


Voir "Racks standard et extensibles" (voir page 355).

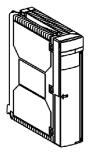
Illustration

Rack extensible TSX RKY 6 positions

Rack extensible TSX RKY 12 positions

Présentation générale des modules d'alimentation TSX PSY

Généralités


Chaque rack nécessite un module d'alimentation *(voir page 253)* défini en fonction du réseau distribué (courant alternatif ou courant continu) et de la puissance nécessaire au niveau du rack.

Il existe deux types de modules :

- · module d'alimentation au format standard
- module d'alimentation double format

Illustration

L'illustration suivante montre les deux formats des modules d'alimentation TSX PSY :

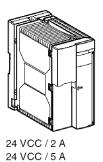
module d'alimentation format standard pour réseau CA ou CC

module d'alimentation double format pour réseau CA ou CC

Présentation générale des alimentations process et AS-i

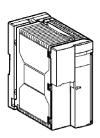
Alimentations process

Une large gamme de modules d'alimentation est proposée afin de s'adapter aux besoins des utilisateurs. Destinés à alimenter en 24 VCC la périphérie d'un système d'automatisme piloté par des automates Premium ou Atrium, ils se montent toutes sur platine Telequick AM1-PA et, pour certains, sur rail DIN central AM1-DP200 / DE 200.


Voir Alimentations process, page 315.

Illustration

Différents types d'alimentation process :



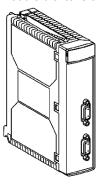
Alimentations AS-i


Elles sont destinées à alimenter en 30 VCC les constituants connectés sur le bus de terrain AS-i.

Illustration

Types d'alimentations AS-i :

30 VCC AS-i / 5 A et 24 VCC


Présentation générale du module d'extension du rack

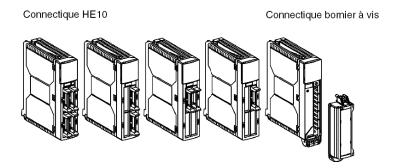
Généralités

Ce module permet l'extension de deux segments de bus du rack hébergeant le processeur, jusqu'à une distance maximum de 250 mètres. Chaque segment étendu peut accueillir des racks répartis tout au long du bus local jusqu'à une longueur maximum de 100 mètres.

Consultez la section Module de déport de bus X, page 405.

Module d'extension de rack.

35010525 12/2018


Présentation générale des modules d'entrées/sorties

Entrées/sorties TOR

Une large gamme de modules d'entrées/sorties TOR permet de s'adapter aux mieux à vos besoins. Ces modules se différencient par :

Caractéristiques	Description
Modularité	8, 16, 28, 32 ou 64 voies.
Type d'entrées	 modules avec entrées à courant continu (24 VCC, 48 VCC) modules avec entrées à courant alternatif (24 VCA, 48 VCA, 110 VCA, 240 VCA)
Type de sorties	 modules avec sorties à relais, modules avec sorties statiques à courant continu (24 VCC / 0,1 A - 0,5 A - 2 A, 48 VCC / 0,25 A - 1 A), modules avec sorties statiques à courant alternatif (24VAC / 130VAC / 1A, 48VAC / 240 VAC /2A).
Type de connectique Connectique borniers à vis et à connecteurs de type HE10 permettant le raccordement aux capteurs et pré-actionneurs par l'intermédiaire du système précâblage TELEFAST 2.	

Illustration:

Entrées/sorties analogiques

La gamme de modules d'entrées et de sorties analogiques permet de répondre à vos principaux besoins. Ces modules se différencient par :

Caractéristiques	Description
Leur modularité	4, 6, 16 voies.
Performances et les gammes de signaux proposés	Tension/courant, thermocouple, multi-gamme (thermocouple, thermosonde, tension/courant).
Le type de connectique	Connectique borniers à vis ou connectique à connecteur de type SUB-D 25 points, permettant le raccordement aux capteurs par l'intermédiaire du système de précâblage TELEFAST 2.

illustration: connectique SUB-D 25 points

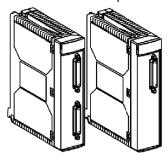
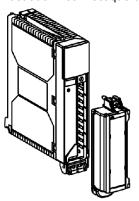
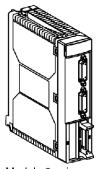



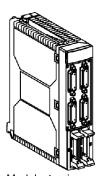
illustration : connectique bornier à vis

Présentation générale des modules de comptage TSX CTY/CCY

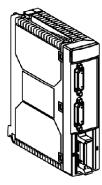
Généralités


Les automates Premium et Atrium proposent les principales fonctions de comptage (décomptage, comptage, comptage/décomptage) à partir des modules métiers « comptage ».

Trois modules sont proposés:


- un module 2 voies et un module 4 voies pour codeur incrémental, avec fréquence maximale d'acquisition de 40 kHz
- un module 2 voies pour :
 - o codeur incrémental, avec fréquence maximale d'acquisition de 500 kHz
 - o codeur absolu série SSI, avec fréquence maximale d'acquisition de 2 MHz.

Illustration


Illustration des différents types de modules de comptage TSX CTY/CCY :

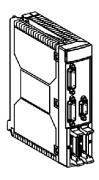
Module 2 voies

Module 4 voies

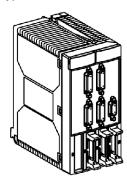
Module 2 voies (codeur incrémental/codeur absolu série).

Présentation des modules commande d'axes

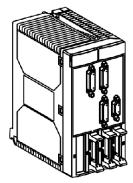
Généralités


Les automates Premium permettent de gérer par l'intermédiaire de modules métiers "commande d'axes", des applications de commande de mouvement, pilotées par des servomoteurs et dont la consigne de vitesse est une grandeur analogique (+/- 10 V).

Cinq modules sont proposés :


Module	Caractéristiques
2 voies	permet un positionnement asservi avec deux axes indépendants, linéaires et bornés.
2 voies	permet un positionnement asservi avec deux axes indépendants, circulaires, infinis.
4 voies	permet un positionnement asservi avec quatre axes indépendants, linéaires et bornés.
4 voies	permet un positionnement asservi avec quatre axes indépendants, circulaires.
3 voies	permet un positionnement sur 2 ou 3 axes synchronisés (interpolation linéaire).

Illustration


Illustration des différents types de modules de commande d'axes :

Module 2 voies

Module 4 voies

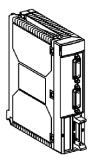
Module 3 voies

Présentation générale des modules de commande pas à pas

Généralités

Les automates Premium et Atrium permettent de gérer par l'intermédiaire de modules métiers « commande pas à pas » des applications de commande de mouvement, pilotées par des translateurs dont la consigne de vitesse est une fréquence.

Deux modules sont proposés :


- un module 1 voie permettant de piloter un translateur
- un module 2 voies permettant de piloter deux translateurs

Illustration

Illustration des différents types de modules :

2-channel module

Présentation générale de la communication

Généralités

Les automates Premium et Atrium permettent différents modes de communication :

- communication sur prise terminal :
 - sur processeurs Premium TSX P57/TSX H57 : ils disposent de deux prises terminal (TER) et (AUX), liaison série RS 485 non isolée, protocole Uni-Telway ou mode caractères
 - o sur processeur Atrium TSX PCI 57 : ils disposent d'une prise terminal (TER), liaison série RS 485 non isolée, protocole Uni-Telway ou mode caractères
- communication Fipio maître, intégrée sur certains processeurs
- communication Ethernet, intégrée sur certains processeurs
- communication via le port USB, intégrée sur certains processeurs
- communication par cartes PCMCIA intégrables dans le processeur ou le module métier communication TSX SCY 21601 : les processeurs ainsi que le module métier communication TSX SCY 21601 disposent d'un emplacement qui permet de recevoir une carte de communication au format PCMCIA type III étendu
- communication par modules métier :
 - o module TSX SCY 21601
 - o module TSX ETY 110

Illustrations

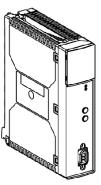
Le tableau suivant illustre les différents modes de communication :

Illustration	Description
	Prises TER et AUX sur processeur TSX P57
	Prises TER et AUX sur processeur TSX PCI 57
	Liaison Fipio sur processeur TSX P57
	Liaison Fipio sur processeurs TSX PCI 57

Illustration	Description
	Liaison Ethernet sur processeurs TSX P57
	Liaison USB sur processeurs TSX P57/TSX H57
	Communication par cartes PCMCIA intégrables sur processeur ou module

Illustration	Description
	Communication par modules métier TSX SCY 21601 : 1 : voie de communication intégrée 2 : emplacement pour carte PCMCIA
	Communication par modules métier TSX ETY 110

Présentation générale du module interface bus AS-i : TSX SAY 100


Généralités

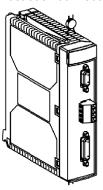
Module permettant la connection à un bus AS-i d'une station automate Premium ou Atrium.

Ce module maître gère et coordonne l'accès au bus. Il échange des données avec tous les esclaves.

Illustration

Illustration du module :

Présentation générale du module de pesage TSX ISPY


Généralités

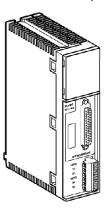
Utilisation des modules métier de « pesage » TSX ISPY 101 et TSX ISPY 101. Vous pouvez utiliser les automates Premium pour gérer les applications de pesage : dosage, dosage multiproduits, tripondéral, régulation de débit, totalisateur de poids, etc.

Ce module propose une entrée de mesure pour 8 capteurs maximum, 2 sorties TOR rapides et 1 liaison série pour un report de visualisation.

Illustration

Illustration du module TSX ISPY 100/101:

Présentation générale du module de surveillance d'arrêt d'urgence


Généralités

Module avec chaîne de sécurité intégrée, conçu pour commander en toute sécurité les circuits d'arrêt d'urgence des machines.

Ces modules permettent de couvrir les fonctions de sécurité jusqu'à la catégorie 4 selon la norme EN 954-1.

Deux modules sont proposés :

- 1 module comportant 12 entrées et 2 sorties,
- 1 module comportant 12 entrées et 4 sorties.

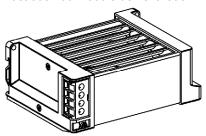
Présentation générale du module de ventilation TSX FAN

Généralités

Selon la modularité des racks (4, 6, 8 ou 12 positions), un, deux ou trois modules de ventilation peuvent être installés au-dessus de chaque rack afin d'aider au refroidissement des différents modules par une convection forcée.

Ces blocs ventilation sont à utiliser dans les cas suivants :

- Température ambiante dans la plage 25°C...60°C
- Température ambiante dans la plage 60°C...70°C


Trois types de modules ventilation sont proposés :

- module ventilation avec alimentation 110 VCA
- module ventilation avec alimentation 220 VCA
- module ventilation avec alimentation 24 VCC

Voir Module de ventilation, page 423.

Illustration

Illustration du module de ventillation TSX FAN :

Chapitre 3

Présentation générale des différentes configurations d'une station automate

Objet de ce chapitre

Ce chapitre a pour objectif de vous présenter de façon générale les différentes configurations possibles de stations automate Premium et Atrium.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Différents types de stations automates Premium	46
Les différents types de station automate avec processeur Atrium	50

Différents types de stations automates Premium

Généralités

Le choix du type de rack et du type de processeur définit les capacités maximales d'une station automate Premium.

Les stations TSX P57 sont constituées des processeurs TSX P57 104/1634/154/0244 et des processeurs TSX P57 204/254/2634/2834/304/354/3634/454/4634/554/5634/6634.

Les stations TSX H57 sont constituées des processeurs TSX H57 24M et TSX H57 44M.

Station TSX P57 0244

Processeur TSX P57 0244 en version simple avec la carte CANopen TSX CPP 110 :

Station avec rack standard: 1 rack 6, 8 ou 12 positions.

Station avec rack extensible: 1 racks 4, 6, 8 ou 12 positions.

Processeur TSX P57 0244 en version configuration :

Station avec

1 rack standard 6 positions 1 alimentation alternative ou continue

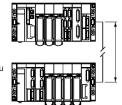
1 carte TSX CPP 110

1 module de comptage TSX CTY 2A

46 35010525 12/2018

Station TSX P57 10

Sans module de déport bus X :

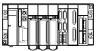


Station avec rack standard: 1 rack 6, 8 ou 12 positions.

Station avec rack extensible : 2 racks 12 positions ou

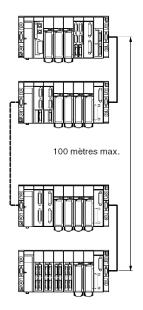
4 racks 4, 6 ou 8 positions,

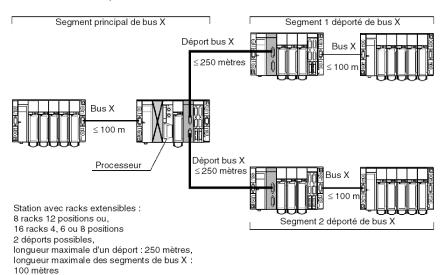
longueur maximale du Bus X : 100 mètres



Avec module de déport bus X :

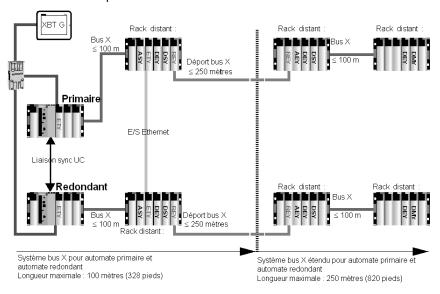
Station TSX 57 20/30/40/50/60


Sans module de déport bus X :


Station avec rack standard: 1 rack 6, 8 ou 12 positions.

Station avec rack extensible : 8 racks 12 positions ou,

16 racks 4, 6 ou 8 positions, longueur maximale du Bus X : 100 mètres

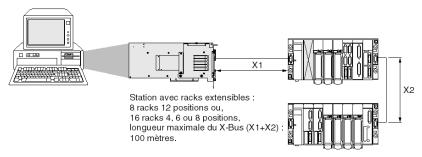


Avec module de déport bus X :

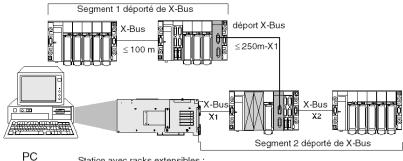
Station TSX H57 24M/44M

Avec module de déport bus X :

Les différents types de station automate avec processeur Atrium


Généralités

Le choix du type de processeur TSX PCI 204/354 définit les capacités maximales d'une station automate Atrium.


Dans ce type de station, le processeur étant intégré dans un PC, celle-ci sera conduite avec des racks extensibles.

Station TSX PCI 57 204

Sans module de déport X-Bus :

Avec module de déport X-Bus :

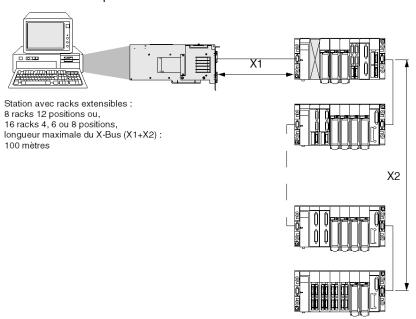
Station avec racks extensibles:

8 racks 12 positions ou,

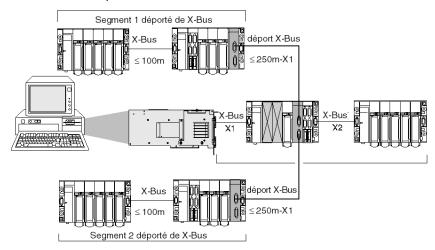
16 racks 4, 6 ou 8 positions,

2 déport possibles.

longueur maximale d'un déport : 250 mètres-X1,


longueur maximale des segments de X-Bus :

100 mètres.


50 35010525 12/2018

Station TSX PCI 57 354

Sans module de déport X-Bus :

Avec module de déport X-Bus :

Station avec racks extensibles:

8 racks 12 positions ou,

16 racks 4, 6 ou 8 positions,

2 déports possibles,

longueur maximale d'un déport : 250 mètres - X1

longueur maximale des segments de X-Bus :100 mètres

Chapitre 4

Présentation générale des réseaux d'automates

Objet de ce chapitre

Ce chapitre a pour objectif de vous présenter de façon générale les réseaux d'automates.

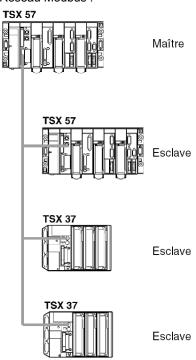
Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page		
Présentation générale du bus Modbus			
Présentation générale d'un réseau Modbus Plus	55		
Présentation générale d'un réseau Fipway	56		
Présentation générale d'un réseau Ethernet	57		
Présentation générale de la communication par modem			
Présentation générale du Bus Uni-Telway			
Présentation générale du bus de terrain Fipio			
Présentation générale du bus de terrain CANopen			
Présentation du bus AS-i			
Présentation générale du bus de terrain Profibus DP			
Présentation générale du bus de terrain INTERBUS			
Présentation du réseau Jnet			

Présentation générale du bus Modbus

Généralités


La communication par Modbus permet l'échange de données entre tous les équipements connectés sur le bus. Le protocole Modbus est un protocole créant une structure hiérarchisée (un maître et plusieurs esclaves).

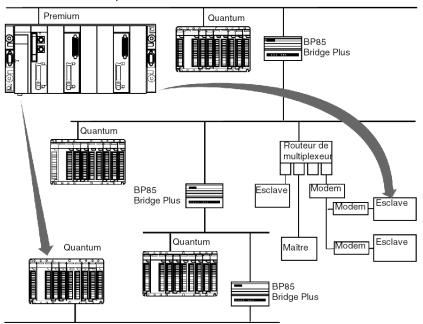
Le maître gère l'ensemble des échanges selon deux types de dialogues :

- le maître échange avec l'esclave et attend la réponse,
- le maître échange avec l'ensemble des esclaves sans attendre de réponse (diffusion générale).

Illustration

Réseau Modbus :

Présentation générale d'un réseau Modbus Plus


Généralités

La communication par Modbus Plus permet l'échange de données entre tous les équipements connectés sur le réseau.

Le protocole Modbus Plus est basé sur le principe d'un bus à jeton logique (Logical Token passing). Chaque station d'un même réseau est identifiée par une adresse comprise entre 1 et 64 et chaque station accède au réseau après réception d'un jeton. Les adresses dupliquées ne sont pas valables.

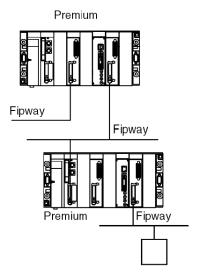
Illustration

L'illustration suivante présente un réseau en Modbus Plus :

Présentation générale d'un réseau Fipway

Généralités

Pour décentraliser la périphérie, l'intelligence et les services sur des grandes distances, Schneider Electric propose le réseau local industriel Fipway.


Le réseau Fipway est totalement conforme à la norme FIP avec accès par un arbitre de bus.

Une voie de communication Fipway comprend trois fonctions élémentaires :

- la fonction messagerie inter-station qui assure le routage des messages
- la fonction d'émission/réception de télégrammes
- la fonction de production/consommation de mots communs (%NW) ou table partagée

Illustration

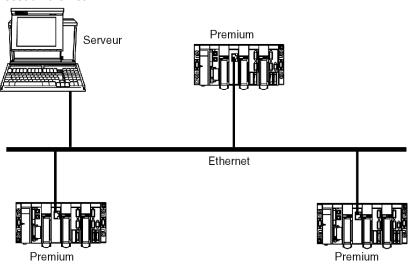
L'illustration suivante montre un réseau Fipway :

Présentation générale d'un réseau Ethernet

Généralités

La communication Ethernet vise essentiellement les applications de :

- coordination entre automates programmables
- supervision locale ou centralisée
- communication avec l'informatique de gestion de production
- communication avec des entrées/sorties distantes


Deux profils de communication sont supportés par les coupleurs réseaux Ethernet :

- le profil ETHWAY reprenant tous les mécanismes de l'architecture de communication X-Way :
 - o système d'adressage X-Way
 - o messagerie UNI-TE
 - o base de donnée distribuée (mots communs)
- le profil TCP/IP sur Ethernet permettant la communication en mode :
 - o messagerie UNI-TE avec l'ensemble de l'architecture X-Way
 - o messagerie Modbus

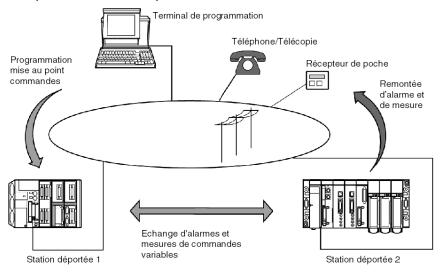
Les coupleurs réseaux Ethernet supportent également, en fonction agent, la gestion du standard de supervision réseau SNMP.

Illustration

Réseau Ethernet :

Présentation générale de la communication par modem

Généralités


Des applications peuvent être concernées par les communications via modem.

Ce type de communication permet d'accéder à des stations déportées par le réseau public téléphonique commuté afin d'effectuer du contrôle, du diagnostic ou du pilotage à longue distance.

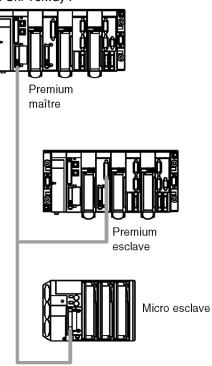
NOTE: Schneider n'a pas développé de carte modem pour ses automates. Il incombe aux utilisateurs de mettre en œuvre ce type de solution.

Illustration

Exemple de communication par modem et des différents services :

Présentation générale du Bus Uni-Telway

Généralités


La communication par Uni-Telway permet l'échange de données entre tous les équipements connectés sur le bus. Le standard Uni-Telway est un protocole UNI-TE créant une structure hiérarchisée (un maître et plusieurs esclaves). L'équipement maître est le gestionnaire du bus.

Uni-Telway permet une communication de type égalitaire et autorise l'envoi de message de :

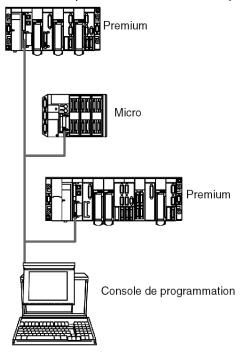
- maître vers esclave
- esclave vers maître
- esclave vers esclave

Illustration

Bus Uni-Telway:

Présentation générale du bus de terrain Fipio

Généralités


La communication par Fipio est une partie de l'offre globale WORLDFIP de Schneider Electric.

Fipio est un bus de terrain qui permet la délocalisation des entrées/sorties d'une station automate et de sa périphérie industrielle au plus près de la partie opérative.

Le protocole Fipio s'appuie sur des échanges de type producteurs/consommateurs (exemple : les mots communs) et la gestion du bus est effectuée par un arbitre de bus.

Illustration

L'illustration suivante présente un bus de terrain Fipio :

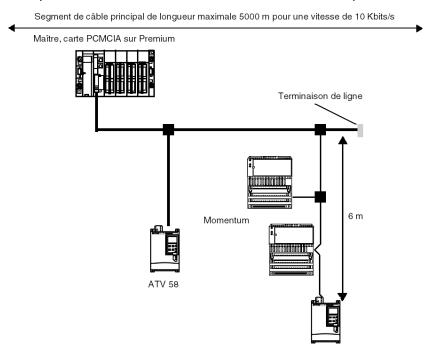
Présentation générale du bus de terrain CANopen

Généralités

Développé à l'origine pour les systèmes embarqués des véhicules automobiles, le bus de communication CAN est maintenant utilisé dans de nombreux domaines comme :

- le transport
- les équipements mobiles
- les équipements médicaux
- le bâtiment
- le contrôle industriel

Les points forts du système CAN :


- le système d'allocation du bus
- la détection des erreurs
- la fiabilité des échanges de données

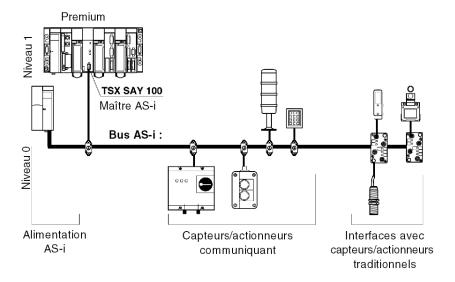
Une architecture CANopen comprend:

- un maître du bus (carte PCMCIA TSX CPP 110)
- des équipements esclaves appelés aussi nœuds

Illustration

L'exemple suivant illustre une architecture du bus de terrain CANopen :

Présentation du bus AS-i


Généralités

Le Bus AS-i (Actuator Sensor-Interface) permet l'interconnexion, sur un câble unique, de capteurs/actionneurs au niveau le plus bas de l'automatisation.

Ces capteurs/actionneurs seront définis dans la documentation comme équipements esclaves.

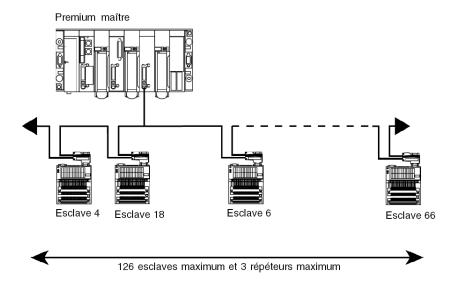
Illustration

Bus AS-i:

Présentation générale du bus de terrain Profibus DP

Généralités

Profibus DP est un bus de terrain de type liaison série pour capteurs et actionneurs répondant aux exigences d'environnement industriel.


Ce bus utilise le procédé de maître/esclave. L'équipement maître gère et coordonne l'accès au bus, et échange des données avec tous les autres équipements.

D'autres équipements tels que des modules d'entrées/sorties sont également disponibles :

- esclaves compacts Classic TIO
 - o entrées TOR classiques
 - o sorties TOR classiques
- esclaves modulaires DEA203
- esclaves modulaires Momentum
 - o entrées TOR
 - o sorties TOR
 - o entrées/sorties TOR
 - o entrées/sorties analogiques

Illustration

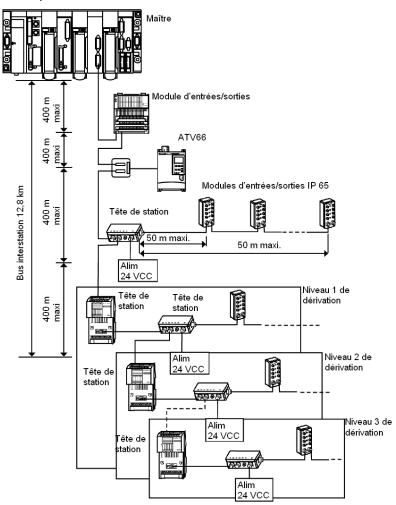
L'illustration suivante présente un bus de terrain Profibus DP :

35010525 12/2018

Présentation générale du bus de terrain INTERBUS

Généralités

INTERBUS est un bus de terrain de type liaison série pour capteurs et actionneurs répondant aux exigences d'environnement industriel.


Ce bus utilise le procédé de maître/esclave. L'abonné maître gère et coordonne l'accès au bus. Il émet et reçoit des données de tous les abonnés.

D'autres équipements sont également disponibles sous les catégories suivantes :

- des têtes de station
- des modules d'entrées/sorties
- des passerelles INTERBUS / AS-i
- des passerelles / Contrôleur AS-i
- des variateurs de vitesse ATV 18, 58, 66
- des ATS46/NEPTUNE
- des protections électriques LT6
- des terminaux clavier voyant XBT BB
- des terminaux d'exploitation XBT-P/E
- · des identifications inductives
- des interface E/S IP20 Telefast
- des Momentum

Illustration

L'exemple suivant illustre une architecture du bus de terrain INTERBUS :

Présentation du réseau Jnet

Présentation

Les automates Premium/Atrium se connectent à des réseaux Jnet à l'aide d'une carte PCMCIA.

Les réseaux Jnet permettent l'échange de données entre des automates Premium/Atrium, des automates April série 1000 et des automates SMC 500/600.

Une topologie de type bus et un protocole de communication à gestion déterministe sont utilisés.

Les mots échangés constituent un tableau. Ce tableau est stocké dans chaque automate et divisé en autant de zones qu'il y a d'automates dans le réseau Jnet. La taille de la zone affectée à chaque automate peut varier (définie lors de la configuration).

Caractéristiques principales

Les caractéristiques sont les suivantes :

- Compatibilité: April 2000/3000/5000/7000 SMC50/600
- Nombre d'automates : 32 au maximum (16 pour un réseau de type SMC)
- Vitesse de transmission fixe : 19 200 bauds
- Format d'émission fixe : 8 bits, aucune parité, 1 arrêt
- Données transmises: 128 mots au maximum, partagées entre tous les automates (64 mots au maximum pour un réseau de type SMC)
- Support d'émission : boucle de courant ou RS485 à 2 fils

NOTE: La documentation sur Jnet n'est disponible que sur le CD-ROM de documentation technique.

NOTE: Les automates Premium utilisant Control Expert sont connectés à un réseau Jnet dans des cas très spécifiques, sur des installations existantes. Etant donné que les fonctionnalités sont les mêmes que pour PL7, la documentation reste au format PL7. Vous devez donc l'adapter à une utilisation dans un environnement Control Expert.

Chapitre 5

Normes et conditions de service

Objet de ce chapitre

Ce chapitre traite des normes et des conditions de mise en service des automates Premium et Atrium.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Normes et Certifications	70
Conditions de service et prescriptions liées à l'environnement	71
Traitement de protection des automates Premium	76

Normes et Certifications

Généralités

Les automates Premium et Atrium ont été développés de façon conforme aux normes nationales et internationales principales relatives à l'équipement industriel électronique d'automates.

- Automates programmables : exigences spécifiques : caractéristiques fonctionnelles, immunité, robustesse, sécurité, etc.
 - CEI 61131-2, CSA 22.2 N° 142, UL 508
- Exigences pour la marine marchande des principales organisations internationales : ABS, BV, DNV, GL, LROS, RINA, RRS, CCS...
- Respect des Directives Européennes :
 - Basse Tension : 73/23/CEE amendement 93/68/CEE Compatibilité Électromagnétique : 89/336/CEE amendements 92/31/CEE et 93/68/CEE
- Qualités électriques et autoextinguibilité des matériaux isolants : UL 746C, UL 94
- Zones dangereuses Cl1 Div2 CSA 22.2 N° 213

A DANGER

RISQUE DE CHOC ELECTRIQUE, EXPLOSION

Ne pas débrancher lorsque le circuit est sous tension, à moins que la zone soit reconnue comme exempte de risque.

Cet équipement est destiné à une utilisation conforme à la Classe i, Division 2, Groupes a, b, c ou d, ou dans des lieux non dangereux uniquement.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Conditions de service et prescriptions liées à l'environnement

Température de fonctionnement/hygrométrie/altitude

Tableau de données :

Température ambiante de fonctionnement	0°C à +60°C (IEC 1131-2 = +5°C à +55°C)	
Humidité relative	10% à 95% (sans condensation)	
Altitude	0 à 2000 mètres	

Tensions d'alimentation

Tableau de données :

Tension	nominal	24 VCC	48 VCC	100240VCA	100120/200240 VCA
	limite	1930VCC	1960VCC (1)	90264VCA	90140/190264VCA
Fréquence	nominale	-	-	50/60 Hz	50/60 Hz
	limite	-	-	47/63 Hz	47/63 Hz
Micro coupures	durée	≤ 1 µs	≤ 1 µs	≤ 1/2 periode	≤ 1/2 periode
	répétition	≥ 1 s	≥ 1 s	≥ 1 s	≥ 1 s
Taux d'harmoniques		-	-	10%	10%
Ondulation résiduelle incluse		5%	5%	-	-

(1) Possible jusqu'à 34 VCC, limitée à 1Heure par 24 heures.

Avec les alimentations TSX PSY 1610 et TSX PSY 3610, et si utilisation de modules à sorties relais, cette plage est réduite à 21,6V...26,4V.

Sécurité des biens et des personnes

Tableau de données :

Désignation de l'essai	Normes	Niveaux		
Rigidité diélectrique et Résistance d'isolement *	IEC 61131-2 UL 508 CSA 22-2 N°142 IEC 60950	Alimentation 24 - 48 V Alimentation 100 - 220 V E/S TOR < 48V E/S TOR > 48V > 10 MΩ	1500 Veff 2000 Veff 500 Veff 2000 Veff	
Continuité des masses *	IEC 61131-2 UL 508 CSA 22-2 N°142	< 0,1 Ω / 30 A / 2 min		
Courant de fuite *	CSA 22-2 N°142 IEC 60950	Equipement fixe < 3,5 mA		
Protection par les enveloppes *	IEC 61131-2 CSA 22-2 N°142 IEC 60950	IP 20		
Robustesse aux impacts	CSA 22-2 N°142 IEC 60950	Chute / 1,3 m / Sphère 500 g		
Légende				
* : Tests demandés par les directives CE				

NOTE: Les équipements doivent être installés et câblés en respectant les consignes données par le manuel TSX DG KBL•.

Immunité des appareils aux perturbations B.F imposées à l'alimentation

Tableau de données :

Désignation de l'essai	Normes	Niveaux		
Variation de tension et de fréquence *	EN 50082-1	Un 15% / Fn 5% 30 min x 2 Un 20% / Fn 10% 5 s x 2		
Variation de tension continue *	EN 50082-1	0,85 Un - 1,2 Un 30 + 30 min + ondulation 5% crête		
Harmonique 3 *	IEC 61131-2	10% Un 0° / 5 min - 180° / 5 min		
Légende				
Un : Tension nominale Fn : Fréquence nominale Ud : Niveau de détection de sous-tension				
*: Tests demandés par les directives CE				

Désignation de l'essai	Normes	Niveaux			
Interruptions momentanées *	IEC 61131-2	AC 10 ms DC 1 ms			
Chutes et reprises de tension *	IEC 61131-2	Un-0-Un; Un / 60s 3 cycles séparés de 10 s Un-0-Un; Un / 5s 3 cycles séparés de 1 à 5 s Un-0,9Ud; Un / 60s 3 cycles séparés de 1 à 5 s			
Légende					
Un : Tension nominale Fn : Fréquence nominale Ud : Niveau de détection de sous-tension					
* : Tests demandés par les directives CE					

NOTE : Les équipements doivent être installés et câblés en respectant les consignes données par le manuel TSX DG KBL•.

Immunité aux perturbations H.F

Tableau de données :

Désignation de l'essai	Normes	Niveaux			
Onde oscillatoire amortie *	IEC 61131-2 IEC 61000-4-12	AC / DC 1 kV MS E/S TOR 24 V 1 kV MS			
Transitoires rapides en salves *	EN 50082-1 IEC 61000-4-4	Alimentation AC / DC 2 kV MF / MC E/S TOR > 48 V 2 kV MC autres ports 1 kV MC			
Onde de choc hybride	IEC 61000-4-5	Alimentation AC / DC 2 kV MF / 1 kV MS E/S TOR AC 2 kV MF / 1 kV MS E/S TOR DC 2 kV MF / 0,5 kV MS Câble blindé 1 kV MC			
Décharges électrostatiques *	IEC 61131-2 IEC 61000-4-2	6 kV contact 8 kV air			
Champ électromagnétique *	EN 50082-2 IEC 61000-4-3	10 V/m; 80MHz - 2 GHz Modulation amplitude sinusoïdale 80% / 1kHz			
Perturbations conduites * EN 50082-2 IEC 61000-4-6 ID V; 0,15 MHz - 80 MHz Modulation amplitude sinusoïdale 80% / 1kHz					
Légende					
MS: Mode série MC: Mode commun MF: Mode filaire					
* : Tests demandés par les directives CE					

NOTE: Les équipements doivent être installés et câblés en respectant les consignes données par le manuel TSX DG KBL•.

Emission électromagnétique

Tableau de données :

Désignation de l'essai	Normes	Niveaux			
Limites en conduction *	EN55022 / 55011 EN50081-2	Classe A 150 kHz - 500 kHz quasi crête 79 dB mV moyenne 66 dB mV 500 kHz - 30 MHz quasi crête 73 dB mV moyenne 60 dB mV			
Limites en rayonnement *(1)	EN55022 / 55011 EN50081-2	Classe A d = 10 m 30 kHz - 230 kHz quasi crête 30 dB mV/m 230 kHz - 1 GHz quasi crête 37 dB mV/m			
Légende					
(1) Ce test est effectué hors armoire, appareils fixés sur grille métallique et câblés selon les recommandations du manuel TSX DG KBL•.					

NOTE: Les équipements doivent être installés et câblés en respectant les consignes données par le manuel TSX DG KBL•.

Immunité aux variations climatiques

Tableau de données :

* : Tests demandés par les directives CE

Désignation de l'essai	Normes	Niveaux			
Chaleur sêche	IEC60068-2-2 Bd	60°C / 16h (E.O) 40°C / 16h (E.F)			
Froid	IEC60068-2-1 Ad	0°C / 16h			
Chaleur humide continue	IEC60068-2-30 Ca	60°C / 93% Hr /96h (E.O) 40°C / 93% Hr /96h (E.F)			
Chaleur humide cyclique	IEC60068-2-30 Db	(55°C E.O / 40°C E.F) ; - 25°C / 93-95% Hr 2 cycles : 12h - 12h			
Variations cycliques de température	IEC60068-2-14 Nb	0°C; - 60°C / 5 Cycles: 6h-6h (E.O) 0°C; - 40°C / 5 Cycles: 6h-6h (E.F)			
Echauffement IEC61131-2 Température ambiante : 60°C UL508 CSA22-2 N°142					
Légende					
E.O: Equipement ouvert E.F: Equipement fermé Hr: Humidité relative					

Immunité aux contraintes mécaniques

Tableau de données :

Désignation de l'essai	Normes	Niveaux		
Vibrations sinusoïdales	IEC60068-2-6 Fc	3 Hz - 100 Hz / 1 mm amplitude / 0,7 Gn Endurance : fr / 90 min / axe (Q limite) < 10 3 Hz - 150 Hz / 1,5 mm / 2 Gn Endurance : 10 cycles (1 octave / min)		
Chocs demi-sinus	IEC60068-2-27 Ea	15 Gn x 11 ms 3 chocs / sens / axe		
Légende				
fr : Fréquence de résonance Q : Coefficient d'amplification				

Robustesse aux variations climatiques

Tableau de données :

Désignation de l'essai	Normes	Niveaux
Chaleur sèche hors fonctionnement	IEC60068-2-2 Bb	70°C / 96h
Froid hors fonctionnement	IEC60068-2-1 Ab	-25°C / 96h
Chaleur humide hors fonctionnement	IEC60068-2-30 dB	60°C ; - 25°C / 93-95% Hr 2 cycles : 12h - 12h
Chocs thermiques hors fonctionnement	IEC60068-2-14 Na	-25°C ; - 70°C 2 ycles : 3h - 3h

Robustesse aux contraintes mécaniques

Tableau de données :

Désignation de l'essai	Normes	Niveaux
Chute libre à plat	IEC60068-2-32 Ed	10 cm / 2 chutes
Chute libre position contrôlée	IEC60068-2-31 Ec	30° ou 10 cm / 2 chutes
Chute libre aléatoire matériel conditionné	IEC60068-2-32 Méthode 1	1 m / 5 chutes

Traitement de protection des automates Premium

Généralités

Les automates de la gamme Premium et Atrium satisfont aux exigences de traitement **AP** (allclimate processing = traitement sous tout climat).

Pour des installations en atelier de production industrielle ou en ambiance correspondant au traitement **TH** (traitement pour ambiances chaudes et humides), les automates Premium doivent être incorporés dans des enveloppes de protection minimum IP54 prescrites par les normes CEI 60664 et NF C 20 040.

Les automates Premium présentent par eux-mêmes un indice de protection IP20. Ils peuvent donc être installés sans enveloppe dans des locaux à accès réservé ne dépassant pas le degré de pollution 2 (salle de contrôle ne comportant ni machine ni activité de production de poussières).

La carte Atrium est conçue pour être intégrée dans un PC hôte. A ce titre, l'indice de protection IP20 doit être assuré par l'équipement d'accueil.

A ATTENTION

RISQUE DE PERTE DE L'INDICE DE PROTECTION IP20

Le respect de l'indice de protection IP20 d'un rack nécessite que les emplacements module non occupés soient protégés par un cache de protection TSX RKA 02.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Partie II

Processeurs Premium TSX P57/TSX H57

Objet de cette partie

Cette partie a pour objectif de décrire les processeurs Premium TSX P57/TSX H57 et leur installation.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	Page
6	Processeurs TSX P57/TSX H57 : présentation	79
7	Processeurs TSX P57/TSX H57 : installation	95
8	Processeurs TSX P57/TSX H57 : diagnostic	113
9	Processeurs TSX P57 0244	141
10	Processeur TSX P57 104	143
11	Processeur TSX P57 154	145
12	Processeur TSX P57 1634	147
13	Processeur TSX P57 204	149
14	Processeur TSX P57 254	151
15	Processeur TSX P57 2634	153
16	Processeur TSX P57 304	155
17	Processeur TSX P57 354	157
18	Processeur TSX P57 3634	159
19	Processeur TSX P57 454	161
20	Processeur TSX P57 4634	163
21	Processeur TSX P57 554	165
22	Processeur TSX P57 5634	167
23	Processeur TSX P57 6634	169
24	Processeurs TSX H57 24M	171
25	Processeurs TSX H57 44M	173
26	Processeur Premium TSX P57/TSX H57 : caractéristiques générales	175
27	Performances des processeurs	181

Chapitre 6

Processeurs TSX P57/TSX H57: présentation

Objectif de ce chapitre

Ce chapitre vous présente les processeurs TSX P57/TSX H57.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale	80
Description physique des processeurs TSX P57/TSX H57	
Horodateur	85
Catalogue des processeurs TSX 57	
Taille des données sur automates Premium et Atrium	

Présentation générale

Introduction

Une large gamme de processeurs TSX P57/TSX H57, de performance et de capacité croissantes, vous est proposée pour répondre au mieux à vos différents besoins.

Généralités


Les processeurs **TSX P57/TSX H57** sont intégrables sur les racks TSX RKY... (*voir page 358*). Liste des processeurs TSX P57/TSX H57 :

- processeur TSX P57 0244, TSX P57 104, TSX P57 1634, TSX P57 154
- processeur TSX P57 204, TSX P57 254, TSX P57 2634
- processeur TSX P57 304, TSX P57 354, TSX P57 3634
- processeur TSX P57 454, TSX P57 4634
- processeur TSX P57 554, TSX P57 5634
- processeur TSX P57 6634
- processeur TSX H57 24M, TSX H57 44M

NOTE: Les processeurs des familles 20, 30, 40 et 50 intègrent les fonctions de régulation.

Illustration

TSX P57/TSX H57 sur rack TSX RKY 8EX:

Fonctions

Les processeurs Premium TSX P57/TSX H57 gèrent l'ensemble d'une station automate constituée de :

- modules d'entrées/de sorties TOR
- modules d'entrées/de sorties analogiques
- modules métiers (comptage, commande d'axes, commande pas à pas, communication...)

qui peuvent être répartis sur un ou plusieurs racks connectés au bus X

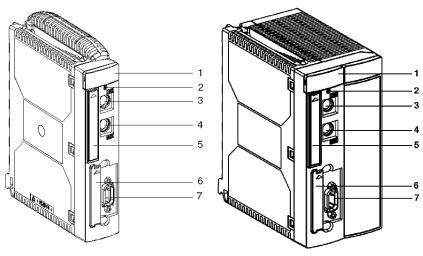
Tableau des processeurs TSX P57/H 57

Vous trouverez dans le tableau suivant tous les processeurs de la gamme TSX P57/TSX H57.

Type TSX	Format	Nombre d'E/S	Taille mémoire maximum			Liaison Fipio	Liaison
	physique	TOR maximum	RAM	M PCMCIA		maître intégrée	Ethernet
		par rack	interne	Données	Programme		intégrée
P57 0244 (1)	Simple	256	96 K8	96 K8	128 K8	-	-
P57 104	Simple	512	96 K8	96 K8	224 K8	-	-
P57 1634	Double	512	96 K8	96 K8	224 K8	-	Х
P57 154	Simple	512	96 K8	96 K8	224 K8	X	-
P57 204	Double	1024	160 K8	160 K8	768 K8	-	-
P57 254	Double	1024	192 K8	192 K8	768 K8	Х	-
P57 2634	Double	1024	160 K8	160 K8	768 K8	-	Х
P57 304	Double	1024	192 K8	192 K8	1 792 K8	-	-
P57 354	Double	1024	224 K8	224 K8	1 792 K8	Х	-
P57 3634	Double	1024	192 K8	192 K8	1 792 K8	-	Х
P57 454	Double	2048	320 K8	440 K8	2048 K8	Х	-
P57 4634	Double	2048	320 K8	440 K8	2 048 K8	-	Х
P57 554	Double	2048	1024 K8	1024 K8	7168 K8	Х	-
P57 5634	Double	2048	1024 K8	1024 K8	7168 K8	-	Х
P57 6634	Double	2048	640 K8	896 K8	4096 K8	-	Х
H57 24M	Double	1024	192 K8	192 K8	768 K8	-	Х
H57 44M	Double	2048	440 K8	440 K8	2048 K8	-	Х

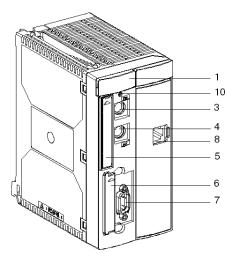
Légende

(1) processeur disponible également en version configuration (voir page 23).

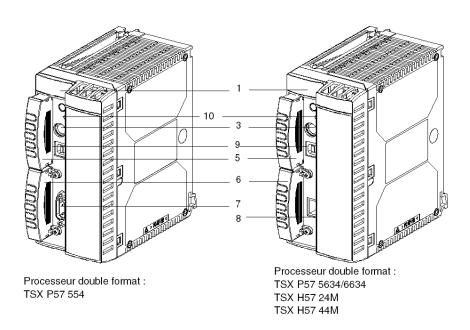

X: disponible

-: non disponible

Description physique des processeurs TSX P57/TSX H57


Illustration

Ces schémas identifient les différents composants d'un module processeur TSX P57/TSX H57 (standard ou double) :



Processeur format standard : TSX P57 0244/104/154

Processeur double format : TSX P57 204/254/304/354/454

Processeur double format : TSX P57 1634/2634/3634/4634

35010525 12/2018

Description

Le tableau suivant décrit les composants d'un module processeur.

Numéro	Fonction
1	Panneau d'affichage comprenant 4 ou 5 voyants.
2	Bouton de requête d'extraction de carte PCMCIA et de stockage de fichiers SRAM. Appuyez sur ce bouton avant d'extraire la carte ; un voyant indique l'état de la requête.
3	Port de terminal (Connecteur TER (mini-DIN 8 broches)): permet de raccorder un terminal de type FTX ou compatible PC, ou bien l'automate au bus Uni-Telway via le boîtier d'isolement TSX P ACC 01. Ce connecteur permet d'alimenter en 5 V le périphérique qui lui est raccordé (dans la limite du courant disponible fourni par l'alimentation).
4	Port de terminal (Connecteur AUX (mini-DIN 8 broches)) : permet de raccorder un périphérique auto-alimenté (terminal, pupitre de dialogue opérateur ou imprimante (aucune tension sur ce connecteur)).
5	Emplacement pour une carte d'extension mémoire PCMCIA de type 1. En l'absence de carte mémoire, cet emplacement est masqué par un cache qu'il fautimpérativement maintenir en place pour protéger l'emplacement de la poussière. Remarque: sur le support de la carte, le contact métallique a été supprimé.
6	Emplacement pour une carte de communications PCMCIA de type 3 qui permet de raccorder au processeur une voie de communication Fipway, Fipio Agent, Uni-Telway, liaison série, Modbus ou Modbus Plus. Cet emplacement peut aussi contenir une carte de stockage de fichiers SRAM (pour TSX 57 554\5634\6634\24M\44M seulement). En l'absence de carte de communications, cet emplacement est équipé d'un cache. La carte de communications PCMCIA n'est pas prise en charge par les processeurs TSX H57 24M et 44M.
7	Connecteur SUB D 9 broches pour raccorder un maître de bus Fipio. Ce connecteur n'est présent que sur les processeurs TSX P57 •54.
8	Connecteur RJ45 pour raccordement Ethernet.
9	Port USB.
10	Bouton RESET à pointe de crayon provoquant un démarrage à froid de l'automate lorsqu'il est actionné. • Processeur en fonctionnement normal : démarrage à froid en mode STOP ou RUN, selon la procédure définie lors de la configuration. • Défaut processeur : démarrage forcé en mode STOP.

NOTE: Les connecteurs (**TER**) et (**AUX**) offrent une connexion UNI-TELWAY maître à 19 200 bauds par défaut et peuvent être configurés pour les modes UNI-TELWAY esclave ou caractère ASCII.

Horodateur

Présentation

Chaque processeur (Premium ou Atrium) dispose d'un horodateur sauvegardé qui gère :

- la date et l'heure courante
- la date et l'heure du dernier arrêt de l'application

La date et l'heure sont gérées même lorsque le processeur est hors tension à la condition que :

- le processeur Premium soit monté sur le rack avec son module d'alimentation en place, équipé d'une pile de sauvegarde
- le processeur Atrium soit équipé d'une pile de sauvegarde

Date et heure courante

le processeur tient à jour la date et l'heure courantes dans les mots système %SW49 à %SW53 ; ces données sont codées en BCD.

Mots système	Octet de poids forts	Octet de poids faible
%SW49	00	Jours de la semaine de 1 à 7 (1 pour lundi et 7 pour dimanche)
%SW50	Secondes (0 à 59)	00
%SW51	Heures (0 à 23)	Minutes (0 à 59)
%SW52	Mois (1 à 12)	Jours du mois (1 à 31)
%SW53	Siècle (0 à 99)	Année (0 à 99)
%SW70		Semaine (1 à 52)

NOTE: %SW49 n'est accessible qu'en lecture.

Accès à la date et à l'heure

Vous pouvez accéder à la date et à l'heure :

- par l'écran de mise au point du processeur
- par le programme :
 - o lecture: mots système %SW49 à %SW53, si le bit système %S50 = 0
 - mise à jour immédiate : écriture des mots système %SW50 à %SW53, si le bit système %S50 = 1
 - mise à jour incrémentale : le mot système %SW59 permet de régler la date et l'heure champ par champ à partir de la valeur courante si le bit système %S59 = 1, ou d'effectuer un incrément/décrément global.

Tableau de valeur des bits :

bit0 = 1 incrémente globalement la date et l'heure (1)	bit8 = 1 décrémente globalement la date et l'heure (1)	
bit1 = 1 incrémente les secondes	bit9 = 1 décrémente les secondes	
bit2 = 1 incrémente les minutes	bit10 = 1 décrémente les minutes	
bit3 = 1 incrémente les heures	bit11 = 1 décrémente les heures	
bit4 = 1 incrémente les jours	bit12 = 1 décrémente les jours	
bit5 = 1 incrémente les mois	bit13 = 1 décrémente les mois	
bit6 = 1 incrémente les années	nnées bit14 = 1 décrémente les années	
bit7 = 1 incrémente les siècles	bit15 = 1 décrémente les siècles	

(1) tous les champs sont mis à jour.

NOTE: Le processeur ne gère pas automatiquement le passage heure d'hiver/heure d'été.

Date et heure du dernier arrêt de l'application

La date et l'heure du dernier arrêt application sont mémorisées en BCD dans les mots système %SW54 à %SW58.

Mots système	s système Octet de poids fort Octet de poids faible	
%SW54	Secondes (0 à 59)	00
%SW55	Heures (0 à 23)	Minutes (0 à 59)
%SW56	Mois (1 à 12)	Jours du mois (1 à 31)
%SW57	Siècle (0 à 99)	Année (0 à 99)
%SW58	Jour de la semaine (1 à 7)	Cause du dernier arrêt application

- accès à la date et à l'heure du dernier arrêt de l'application : par lecture des mots système %SW54 à %SW58,
- cause du dernier arrêt de l'application : lecture de l'octet de poids faible du mot système %SW58 (valeur mémorisée en BCD).

Tableau du mot système %SW58 :

%SW58 = 1	passage en STOP de l'application
%SW58 = 2	arrêt de l'application sur défaut logiciel
%SW58 = 4	coupure secteur ou action sur bouton RESET de l'alimentation
%SW58 = 5	arrêt défaut matériel
%SW58 = 6	arrêt de l'application sur instruction HALT

Catalogue des processeurs TSX 57

Catalogue des processeurs TSX P570244/104/1634/154/

Le tableau suivant décrit les principales caractéristiques (maximales) des processeurs TSX P57 0244, TSX P57 104, TSX P57 1634, TSX P57 154.

Référence	Référence		TSX P 57 104	TSX P 57 1634	TSX P 57 154
Nombre de	TSX RKY 12 EX	1	2	2	2
racks	TSX RKY 4EX/6EX/8EX	1	4	4	4
Nombre	Avec TSX RKY 12 EX	10	21	21	21
d'emplacements modules	Avec TSX RKY 4EX/6EX/8EX	6	27	27	27
Nombre de	E/S TOR en rack	256	512	512	512
voies	E/S analogiques	12	24	24	24
	Métiers (comptage, axe)	4	8	8	8
Nombre de connexions	Réseau (Fipway, ETHWAY/TCP_IP, Modbus Plus)	1	1	1	1
	Fipio maître, nb d'équipements	-	-	-	63
	Ethernet	-	-	1	-
	Bus de terrain (InterBus-S, Profibus)	0	0	0	0
	CANopen	1	1	1	1
	Capteur/actionneur ASi	1	2	2	2
Taille mémoire	Interne	96 K8	96 K8	96 K8	96 K8
	extension	128 K8	224 K8	224 K8	224 K8

Catalogue des processeurs TSX P57204/254/2634

Le tableau suivant décrit les principales caractéristiques (maximales) des processeurs TSX P57 204 et TSX P57 254, TSX P57 2634.

Référence		TSX P 57 204	TSX P 57 254	TSX P 57 2634
Nombre de	TSX RKY 12 EX	8	8	8
racks	TSX RKY 4EX/6EX/8EX	16	16	16
Nombre	Avec TSX RKY 12 EX	87	87	87
d'emplacements modules	Avec TSX RKY 4EX/6EX/8EX	111	111	111
Nombre de voies	E/S TOR en rack	1024	1024	1024
	E/S analogiques	80	80	80
	Métiers (comptage, axe)	24	24	24
Nombre de connexions	Réseau (Fipway, ETHWAY/TCP_IP, Modbus Plus)	1	1	1
	Fipio maître, nb d'équipements	-	127	-
	Ethernet	-	-	1
	Bus de terrain (InterBus-S, Profibus)	1	1	1
	CANopen	1	1	1
	Capteur/actionneur ASi	4	4	4
Taille mémoire	Interne	160 K8	192 K8	160 K8
	extension	768 K8	768 K8	768 K8

Catalogue des processeurs TSX P57304/354/3634/454/4634

Le tableau suivant décrit les principales caractéristiques (maximales) des processeurs TSX P57 304, TSX P 57 354, TSX P57 3634, TSX P57 454 et TSX P57 4634.

Paramètres		TSX P 57 304	TSX P 57 354	TSX P 57 3634	TSX P 57 454	TSX P 57 4634	
Nombre de racks	TSX RKY 12 EX	8	•		•	•	
	TSX RKY 4EX/6EX/8EX	16 87					
Nombre	Avec TSX RKY 12 EX	01					
d'emplacements modules	Avec TSX RKY 4EX/6EX/8EX	111					
Nombre de voies	E/S TOR en rack	1024	1024	1024	2048	2048	
	E/S analogiques	128	128	128	256	256	
	Métiers (comptage, axe)	32	32	32	64	64	
Nombre de connexions	Réseau : Fipway, ETHWAY/TCP_IP, Modbus Plus	3	3	3	4	4	
	Fipio maître, nb d'équipements	-	127	-	127	-	
	Ethernet	-	-	1	-	1	
	Bus de terrain (InterBus-S, Profibus)	3	3	3	4	4	
	CANopen	1	1	1	1	1	
	Capteur/actionneur ASi	8	8	8	8	8	
Taille mémoire	Internes	192 K8	224 K8	192 K8	440 K8	440 K8	
	Extension	1 792 K8	1 792 K8	1 792 K8	2 048 K8	2 048 K8	

35010525 12/2018

Catalogue des processeurs TSX H57 24M/44M

Le tableau suivant décrit les principales caractéristiques (maximales) des processeurs TSX H57 24M et TSX H57 44M.

Paramètres		TSX H57 24M	TSX H57 44M
Nombre de racks	TSX RKY 12 EX	8	
	TSX RKY 4EX/6EX/8EX	16	
Nombre	Avec TSX RKY 12 EX	87	
d'emplacements modules	Avec TSX RKY 4EX/6EX/8EX	111	
Nombre de voies	E/S TOR en rack	1024	2048
	E/S analogique	80	256
	Expert (comptage, axe, déplacement, pesage)	0	0
	Modbus	24	64
Nombre de connexions	Réseau: FIPWAY, ETHWAY/TCP-IP, Modbus Plus.	0	
	Ethernet	2	4
	Bus de terrain (InterBus-S, Profibus)	0	
	CANopen	0	
	Capteur/actionneur ASi	0	
Taille mémoire	Interne	192K8	440 K8
	Extension	768 K8	2048 K8

Catalogue des processeurs TSX P57554/5634/6634

Le tableau suivant décrit les principales caractéristiques (maximales) des processeurs TSX P57 554 et TSX P 57 5634.

Paramètres		TSX P 57 554	TSX P 57 5634	TSX P 57 6634
Nombre de racks	TSX RKY 12 EX	8	8	8
	TSX RKY 4EX/6EX/8EX	16	16	16
Nombre	Avec TSX RKY 12 EX	87	87	87
d'emplacements modules	Avec TSX RKY 4EX/6EX/8EX	111	111	111
Nombre de voies	E/S TOR en rack	2048	2048	2048
	E/S analogique	512	512	512
	Expert (comptage, axe)	64	64	64
Nombre de connexions	Réseau: Fipway, ETHWAY/TCP_IP, Modbus Plus	4	4	4
	Fipio maître, nb d'équipements	127		
	Ethernet		1	1
	Bus de terrain (InterBus-S, Profibus)	5	5	5
	CANopen	1	1	1
	Capteur/actionneur ASi	8	8	8
Taille mémoire	Interne	1024 K8	1024 K8	2048 K8
	extension	7168 K8	7168 K8	4096 K8

Taille des données sur automates Premium et Atrium

Présentation

Selon les processeurs la taille maximum des données localisée et non localisées est différente.

Taille des données localisées

Taille maximum des données localisée en fonction du type de processeur :

Type d'objet	Repère	Valeurs max/Valeurs par défaut pour TSX P57 0244/104/154/ 1634	Valeurs max/Valeurs par défaut pour TSX P57 204/254/2634, TSX PCI 57 204 et TSX H57 24M	Valeurs max/Valeurs par défaut pour TSX P57 304/354/363 4 et TSX PCI 57 354	Valeurs max/Valeurs par défaut pour TSX P57 454/4634 et TSX H57 44M	Valeurs max/valeurs par défaut pour TSX P57 554/5634	Valeurs max/valeurs par défaut pour TSX P57 6634
Bits internes	%Mi	3692/256	8056/512	16250/512	32634/512	32634/512	32634/512
Bits d'entrées/ sorties	%I/Qr.m.c	(1)	(1)	(1)	(1)	(1)	(1)
Bits système	%Si	128	128	128	128	128	128
Mots internes	%MWi	32464/512	32464/1024	32464/1024	32464/1024	65232/2048	65232/2048
Mots constants	%KWi	32760/128	32760/256	32760/256	32760/256	32760/256	32760/256
Mots système	%SWi	168	168	168	168	168	168

(1) dépend de la configuration matérielle déclarée (modules d'E/S, équipements AS-interface).

Taille des données non localisées

Taille maximum des données non localisée en fonction du type de processeur :

Type d'objet	Taille pour TSX P57 0244/104/154/1634	Taille pour TSX P57 204/2634/254/304/354/3634 et TSX PCI 57 204/354	Taille pour TSX P57 454/4634/554/5634/6634 et TSX H57 24M/44M
Types de données élémentaires (EDT) Types de données dérivées (DDT)	Limitée à 32 Ko	Limitée à 64 Ko	Illimitée (1)
Données de blocs fonction DFB et EFB	La taille de chaque instance est limitée à 64 Ko, le nombre d'instances est illimité (1)	La taille de chaque instance est limitée à 64 Ko, le nombre d'instances est illimité (1)	La taille d'une instance et le nombre d'instances sont illimités (1)

⁽¹⁾ la limite est donnée par la taille mémoire interne (voir page 87) de l'automate.

Chapitre 7

Processeurs TSX P57/TSX H57: installation

Objectif de ce chapitre

Ce chapitre présente l'installation des modules processeur **TSX P57/TSX H57** et de la carte d'extension **PCMCIA**.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

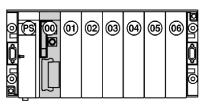
Sujet	Page
Positionnement du module processeur	96
Comment monter les modules processeur	98
Installation des modules à côté des processeurs TSX P57 0244/104/154	100
Cartes mémoire standard pour automates	101
Cartes mémoire de type application\fichiers et de type stockage de fichiers	103
Traitement sur insertion/extraction d'une carte d'extension mémoire PCMCIA sur automate Premium	107
Montage/Démontage des cartes d'extension mémoire PCMCIA sur processeur TSX P57/TSX H57	109

Positionnement du module processeur

Introduction

Deux cas de figure peuvent se présenter à vous lors du positionnement d'un module processeur sur un rack :

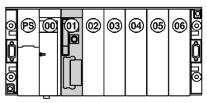
- positionnement d'un module processeur au format standard,
- positionnement d'un module processeur double format.


Positionnement d'un module processeur format standard

Un module processeur format standard s'installe toujours sur le rack **TSX RKY..** d'adresse 0 et en position 00 ou 01 selon que le rack est équipé d'un module d'alimentation de type format standard ou double format.

Rack avec module d'alimentation de type format standard : TSX PSY 2600/1610.

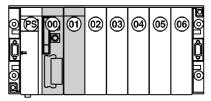
Dans ce cas, le module processeur sera installé en position 00 (position préférentielle) ou en position 01, dans ce dernier cas la position 00 doit être inoccupée.


Illustration

Rack avec module d'alimentation de type double format : TSX PSY 3610/5500/5520/8500.

Dans ce cas, le module d'alimentation occupant deux positions (PS et 00), le processeur sera installé en position 01.

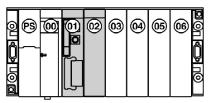
Illustration


Positionnement d'un module processeur double format

Un module processeur double format s'installe toujours sur le rack **TSX RKY.**. d'adresse 0 et en positions 00 et 01 ou 01 et 02 selon que le rack est équipé d'un module d'alimentation de type format standard ou double format.

Rack avec module d'alimentation de type format standard : TSX PSY 2600/1610 .

Dans ce cas, le module processeur sera installé en position 00 et 01 (position préférentielle) ou en position 01 et 02 dans ce dernier cas la position 00 doit être inoccupée.


Illustration

Rack avec module d'alimentation de type double format : TSX PSY 3610/5500/5520/8500 .

Dans ce cas, le module d'alimentation occupant deux positions (PS et 00), le processeur sera installé en position 01 et 02.

Illustration

NOTE : Le rack sur lequel est installé le processeur a toujours l'adresse 0.

Comment monter les modules processeur

Vue d'ensemble

Le montage et le démontage des modules processeur est identique au montage et au démontage des autres modules à l'exception près **qu'il ne doit pas être effectué sous tension**.

Mise en place d'un module processeur sur un rack

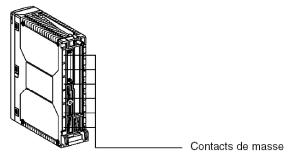
Effectuez les étapes suivantes :

Etape	Action	Illustration
1	Positionnez les ergots situés à l'arrière du module dans les trous de centrage situés dans la partie inférieure du rack (repère 1).	
2	Pivotez le module afin de l'amener en contact avec le rack (repère 2).	
3	Solidarisez le module processeur avec le rack par vissage de la vis située dans la partie supérieure du module (repère 3).	3

NOTE : le montage de modules processeur s'effectue de façon identique au montage d'autres modules.

NOTE: couple de serrage maximum de la vis: 2,0 Nm

AVIS


RISQUE DE DETERIORATION DU MODULE

Un module processeur doit être monté obligatoirement avec l'alimentation du rack hors tension. Le non-respect de ces instructions peut provoquer des dommages matériels.

Mise à la terre des modules

La mise à la terre des modules processeur est réalisée par des plaques métalliques situées en face arrière du module. Lorsque le module est en place, ces plaques métalliques sont en contact avec la tôle du rack, assurant ainsi la mise à la terre.

Illustration

Installation des modules à côté des processeurs TSX P57 0244/104/154

A AVERTISSEMENT

SURCHAUFFE DU MODULE

Pour les processeurs TSX P57 0244/104/154, le module accolé au processeur ne doit pas avoir une puissance dissipée supérieure à :

- 10 W pour une température ambiante de fonctionnement de 60 °C,
- 16 W pour une température ambiante de fonctionnement de 25 °C.

Dans le cas contraire, il devra être installé sur un autre emplacement du rack.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Par exemple, si le processeur est sur l'emplacement 1 du rack :

- un module TSX CTY 2A avec une puissance dissipée maximum de 6 W pourra être placé à côté du processeur, soit à l'emplacement 2,
- un module TSX CTY 4A avec une puissance dissipée maximum de 11,5 W devra être placé à un emplacement autre que le 2.

Cartes mémoire standard pour automates

Cartes mémoire standard

On distingue deux types de cartes mémoire standard :

- les cartes d'extension mémoire de type RAM enregistrée ;
- les cartes d'extension mémoire de type Flash Eprom.

Cartes d'extension mémoire de type RAM enregistrée :

Utilisées lors de la génération et de la mise au point d'un programme d'application. Elles sont employées pour tous les services de transfert et de modification d'application en ligne.

La mémoire est enregistrée par une pile amovible intégrée à la carte mémoire.

Cartes d'extension mémoire de type Flash Eprom :

Utilisées lorsque la mise au point d'un programme d'application est terminée. Elles permettent uniquement de transférer l'application dans son intégralité et de s'affranchir des problèmes de sauvegarde par pile.

Remarque: pour créer une table d'animation en mode connecté à l'aide d'une carte mémoire de type Flash Eprom, suivez la procédure ci-après.

- 1 Cliquez sur Outils → Options du projet...
- 2 Sous l'onglet *Générer*, désélectionnez l'option *Table d'animation*.

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'APPLICATION - PROTECTION DES CARTES PCMCIA

La modification de la position du commutateur de protection en écriture des cartes PCMCIA doit être obligatoirement réalisée lorsque l'automate est hors tension.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Références des cartes d'extension mémoire de type RAM

Le tableau suivant indique la compatibilité des cartes avec les processeurs :

Références	Type/Capaci	té	Capacité mémoire maximum gérée par les processeurs							
	Application	Fichier	TSX P57 0244	TSX P57 1•4	TSX P57 2•4 TSX PCI 57 204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4		
TSX MRP P 128K	128 K8 RAM	0	Limitée à 128 K8	Totalité	Totalité	Totalité	Totalité	-		
TSX MRP P 224K	224 K8 RAM	0	Limitée à 128 K8	Totalité	Totalité	Totalité	Totalité	-		
TSX MRP P 384K	384 K8 RAM	0	Limitée à 128 K8	Limitée à 224 K8	Totalité	Totalité	Totalité	-		

Références des cartes d'extension mémoire de type Flash Eprom

Le tableau suivant indique la compatibilité des cartes avec les processeurs :

Références	Type/Capacité		Capacité mémoire maximum gérée par les processeurs							
	Application	Fichier	TSX P57 0244	TSX P57 1•4	TSX P57 2•4 TSX PCI 57 204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4		
TSX MFP P 128K	Flash Eprom 128 K8	0	Limitée à 128 K8	Totalité	Totalité	Totalité	Totalité	-		
TSX MFP P 224K	Flash Eprom 224 K8	0	Limitée à 128 K8	Totalité	Totalité	Totalité	Totalité	-		
TSX MFP P 384K	Flash Eprom 384 K8	0	Limitée à 128 K8	Limitée à 224 K8	Totalité	Totalité	Totalité	-		
TSX MFP P 512K	Flash Eprom 512 K8	0	Limitée à 128 K8	Limitée à 224 K8	Totalité	Totalité	Totalité	Totalité		
TSX MFP P 001M	Flash Eprom 1 024 K8	0	Limitée à 128 K8	Limitée à 224 K8	Limitée à 768 K8	Totalité	Totalité	Totalité		
TSX MFP P 002M	Flash Eprom 2 048 K8	0		Limitée à 224 K8	Limitée à 768 K8	Totalité	Totalité	Totalité		
TSX MFP P 004M	Flash Eprom 4 096 K8	0		Limitée à 224 K8	Limitée à 768 K8	Limitée à 1 792 K8	Limitée à 2048K8	Totalité		

NOTE: capacité de mémoire : K8 = Kilo-octets.

Toutes les cartes PCMCIA peuvent être insérées dans n'importe quel processeur à l'exception des processeurs TSX P57 554/5634/6634 qui n'acceptent pas les cartes de faible capacité TSX MRP P 128/224/384/K et TSX MFP P 128/224/384/K.

La taille d'application utilisable est limitée par les caractéristiques du processeur.

Cartes mémoire de type application\fichiers et de type stockage de fichiers

Cartes d'extension mémoire de type application + fichiers

Ces cartes mémoire disposent en plus de la zone de stockage application traditionnelle (programme + constantes), d'une zone fichier permettant d'archiver\restituer des données par programme.

Exemples d'application :

- stockage automatique de données de l'application et consultation à distance par liaison modem,
- stockage de recettes de fabrication.

Deux types de carte mémoire sont proposés :

- cartes d'extension mémoire de type RAM enregistrée : application + fichiers. La mémoire est enregistrée par une pile amovible intégrée dans la carte mémoire.
- carte d'extension mémoire de type Flash Eprom : application + fichiers. Dans ce cas, la zone de stockage de données est en RAM enregistrée ce qui implique que ce type de carte doit être équipé d'une pile de sauvegarde.

▲ AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'APPLICATION - PROTECTION DES CARTES PCMCIA

La modification de la position du commutateur de protection en écriture des cartes PCMCIA doit être obligatoirement réalisée lorsque l'automate est hors tension.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Cartes pour ambiance sévère

Il existe trois cartes spécialement conçues pour être utilisées dans des ambiances sévères. Il s'agit des carte TSX MRP C 001MC, TSX MRP C 003MC et TSX MRP C 007MC, dont les caractéristiques sont respectivement identiques à celles des cartes TSX MRP C 001M, TSX MRP C 003M et TSX MRP C 003M.

Référence des cartes

Le tableau suivant fournit la référence des cartes d'extension mémoire de type application + fichiers et la compatibilité de ces cartes avec les processeurs :

Références	Type de	Capacité		Capacité mémoire maximum gérée par les processeurs						
	technologie	Zone application	Zone fichier (Type RAM)	TSX P57 0244	TSXP57 1•4	TSX P57 2•4 TSX PCI 57 204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4	
TSXMRPC	RAM	448 K8			Limitée à 224/ 256 K8	Totalité	Totalité	Totalité	-	
448K (1)	Défaut	192 K8	256 K8							
	Limites	96 à 448 K8	0 à 352 K8							
TSXMRPC	RAM	768 K8			Limitée à 224/ 256 K8	Totalité	Totalité	Totalité	Totalité	
768 K (1)	Défaut	512 K8	256 K8							
	Limites	192 à 768 K8	0 à 576 K8							
TSXMRPC	RAM	1 024 K8	-		Limitée à 224/ 256 K8	Limitée à 768/ 832 K8	Totalité	Totalité	Totalité	
001M (1)	Défaut	768 K8	256 K8							
	Limites	192 à 1024 K8	0 à 832 K8							
TSXMRPC	RAM	1 792 K8	1		Limitée à 224/ 256 K8	Limitée à 768/ 1600 K8	Totalité	Totalité	Totalité	
001M7 (1)	Défaut	512 K8	1280 K8							
	Limites	192 à 1792 K8	0 à 1600 K8							
TSXMRPC	RAM	2048 K8			Limitée à	Limitée à	Limitée à	Totalité	Totalité	
002M (1)	Défaut	768 K8	1280 K8		224/ 256 K8	768/ 1856 K8	1792/ 1856 K8			
	Limites	192 à 2048 K8	0 à 1856 K8		230 No	1030 Ko				
TSXMRPC	RAM	3072 K16			Limitée à 224/ 256 K8	Limitée à	Limitée à 1792/ 2880 K8	Limitée à 2048/ 2880 K8	Totalité	
003M (1)	Défaut	1 024 K8	2048 K8			768/ 2880 K8				
	Limites	192 à 3072 K8	0 à 2880 K8			2000 NO				
TSXMRPC	RAM	7168 K8			Limitée à 224/ 256 K8	Limitée à 768/ 6976 K8	Limitée à 1792/ 6976 K8	Limitée à 2048/ 6976 K8	Limitée à	
007M (1)	Défaut	2048 K8	5120 K8						4096/ 6976 K8	
	Limites	192 à 7168 K8	0 à 6976 K8							

Références	Type de technologie	Capacité		Capacité mémoire maximum gérée par les processeurs						
		Zone application	Zone fichier (Type RAM)	TSX P57 0244	TSXP57 1•4	TSX P57 2•4 TSX PCI 57 204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 354 TSX H57 44M	TSX P57 5•4 TSX P57 6•4	
TSXMCPC 224K	Flash Eprom	224 K8	256 K8	Limitée à 128/ 256 K8	Totalité	Totalité	Totalité	Totalité	-	
TSXMCPC 512K	Flash Eprom	512 K8	512 K8	Limitée à 128/ 256 K8	Limitée à 224/ 256 K8	Totalité	Totalité	Totalité	Totalité	
TSXMCPC 002M	Flash Eprom	2048 K8	1 024 K8	Limitée à 128/ 256 K8	Limitée à 224/ 256 K8	Limitée à 768/ 1024 K8	Limitée à 1 792/ 1024 K8	Totalité	Totalité	

(1) PCMCIA ayant leurs zones mémoire application et fichiers de capacité flottante et non figée.

NOTE: capacité de mémoire : K8 = Kilo-octets.

Notation des limites : le premier nombre indique la limite de la zone application, le second la limite de la zone fichier, exemple : limitée à 224 K/256 K signifie que la zone application est limitée à 224 K8 et la zone fichier à 256 K8.

Toutes les cartes PCMCIA peuvent être insérées dans n'importe quel processeur à l'exception des processeurs TSX P57 554/5634/6634 qui n'acceptent pas les cartes de faible capacité TSX MCP C 224K et TSX MRP C 448K.

La taille d'application utilisable est limitée par les caractéristiques du processeur.

Cartes d'extension mémoire de type fichiers sans application

Ces cartes mémoire contiennent des données et aucune zone d'application (programme+constantes).

Ces cartes d'extension mémoire stockage de fichiers sont de type RAM enregistrée. La mémoire est enregistrée par une pile amovible intégrée dans la carte mémoire.

Référence des cartes

Le tableau suivant fournit la référence des cartes d'extension mémoire de type stockage de fichiers sans application et la compatibilité de ces cartes avec les processeurs :

Références	Type technologie	Capacité		Capacité mémoire maximum gérée par les processeurs					
		Zone application	Zone fichier (Type RAM)	TSX P57 1•4	TSX P57 2•4 TSX PCI 57 204 TSX H57 24M	TSX P57 3•4	TSX P57 4•4 TSX PCI 57 454 TSX H57 44M	TSX P57 5•4 TSX P57 6•4	
TSX MRP	RAM	4096 K8		-	4096 K8	4096 K8	4096 K8	4096 K8	
F 004M		0	4096 K8						
TSX MRP	RAM	8192 K8		-	8192 K8	8192 K8	8192 K8	8192 K8	
F 008M		0	8192 K8						

NOTE: capacité de mémoire: K8=Kilo-octet, M8=Mega-octet Toutes les cartes PCMCIA peuvent être insérées dans n'importe quel processeur, à l'exception des processeurs de la famille TSX P57 1•4.

Traitement sur insertion/extraction d'une carte d'extension mémoire PCMCIA sur automate Premium

Généralités

AATTENTION

DESTRUCTION DU MODULE

Si aucune carte d'extension mémoire PCMCIA n'est insérée dans l'automate Premium, ne mettez pas le cache de protection du panneau avant en place.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Automates TSX P57 1-4 à 4-4

Cartes mémoire situées dans l'emplacement A (haut)

L'extraction (ou l'absence) du cache ou de la carte mémoire équipée de son préhenseur provoque l'arrêt de l'automate, sans enregistrement du contexte application. Les sorties des modules passent en repli.

L'insertion du cache ou de la carte mémoire munie de son préhenseur provoque un démarrage à froid de l'automate.

▲ AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'APPLICATION

Assurez-vous, avant d'insérer la carte mémoire dans l'automate, que celle-ci contient l'application utilisateur correcte.

Si le programme contenu dans la carte mémoire PCMCIA comporte l'option RUN AUTO, le processeur démarrera automatiquement en mode RUN après insertion de la carte.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Cartes mémoire situées dans l'emplacement B (bas)

L'insertion de la carte mémoire PCMCIA type 3 dans l'emplacement B du processeur doit être réalisée lorsque **l'automate est hors tension**. Le non-respect de cette consigne peut entraîner un dysfonctionnement du processeur.

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'APPLICATION - PROTECTION DES CARTES PCMCIA

La modification de la position du commutateur de protection en écriture des cartes PCMCIA doit être obligatoirement réalisée lorsque l'automate est hors tension.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Automates TSX P57 5•4/TSX P57 6•4/TSX H57 24M/TSX H57 44M

Cartes mémoire situées dans l'emplacement A (haut)

L'extraction (ou l'absence) du cache ou d'une carte mémoire de type données ou fichiers (*) équipée de son caddie n'a pas d'effet sur les modes opératoires de l'automate.

(*) Dans ce cas, les fonctions de lecture ou d'écriture de la carte mémoire indiquent une erreur si l'application est en mode RUN.

L'extraction de la carte mémoire contenant l'application équipée de son caddie provoque l'arrêt de l'automate, sans enregistrement du contexte application. Les sorties des modules passent en repli.

L'insertion de la carte mémoire contenant l'application munie de son caddie provoque un démarrage à froid de l'automate.

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'APPLICATION

Assurez-vous, avant d'insérer la carte mémoire dans l'automate, que celle-ci contient l'application utilisateur correcte.

Si le programme contenu dans la carte mémoire PCMCIA comporte l'option RUN AUTO, le processeur démarrera automatiquement en mode RUN après insertion de la carte.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Cartes mémoire situées dans l'emplacement B (bas)

La carte mémoire PCMCIA et son caddie peuvent être insérés dans l'emplacement B du processeur lorsque **l'automate est sous tension**.

Montage/Démontage des cartes d'extension mémoire PCMCIA sur processeur TSX P57/TSX H57

Introduction

L'installation de la carte mémoire PCMCIA dans son emplacement sur le module processeur TSX P57 nécessite un préhenseur ou un caddie dans le cas des processeurs TSX P57 5•4/TSX H57•4.

Positionnement des cartes PCMCIA dans les processeurs

Le tableau suivant indique les emplacements possibles pour les différents types de cartes PCMCIA dans les processeurs automates :

Carte PCMCIA	Emplacement A (haut)	Emplacement B (bas)
Standard : TSX MRPP• et MFPP•	Oui	Aucune
Application et fichiers : TSX MRPC• et MCPC•	Oui	Aucune
Données ou fichiers : TSX MRPF•	Oui	Oui

Montage de la carte dans le préhenseur

Les cartes mémoire (*) dans le cas d'automates Premium TSX P57 1•4 à TSX P57 4•4 se montent dans le préhenseur de la façon suivante :

Etape	Action	Illustration
1	Positionnez l'extrémité de la carte mémoire (côté opposé au connecteur) à l'entrée du préhenseur. Les repères (en forme de triangle) présents à la fois sur le préhenseur et sur l'étiquette de la carte doivent être situés du même côté.	repères
2	Faites glisser la carte mémoire dans le préhenseur jusqu'à ce qu'elle arrive en butée. La carte est désormais solidaire du préhenseur.	détrompeur à 1 rebord connecteur repères détrompeur à 2 rebords préhenseur

(*) Remarque : Ce montage concerne uniquement les cartes de type données ou fichiers TSX MRPF•. Voir procédure de montage ci-après.

Montage de la carte TSX MRP F• dans l'extracteur

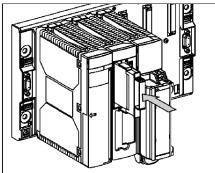
Lorqu'elles sont insérées dans l'emplacement B (bas), les cartes mémoire TSX MRP F• des automates Premium TSX P57 1•4 à TSX P57 4•4 se montent dans l'extracteur de la façon suivante :

Etape	Action	Illustration Carte avec une PV ≤ 03 (1)	Illustration Carte avec une PV > 03 (1)
1	Présentez l'extracteur de façon oblique par rapport à la carte mémoire, en positionnant les 2 ergots situés sur la carte dans 2 fentes de l'extracteur.	broche	ergot
2	Faites pivoter l'extracteur sur la carte jusqu'au verrouillage complet.	Clic!	Clic!
Légend	de		
		sur l'étiquette collée sur la carte PCMC	CIA.

Montage de la carte dans le caddie pour TSX P 57 5•4/TSX H57•4

Effectuez les étapes suivantes quel que soit le type de carte :

Etape	Action	Illustration Carte avec une PV ≤ 03 (1)	Illustration Carte avec une PV > 03 (1)
1	Orientez la carte mémoire dans le caddie selon un angle oblique à l'aide des deux dispositifs de fixation.	caddie détrompeur	caddie
2	Faites glisser la carte mémoire dans le caddie jusqu'à ce qu'elle arrive en butée. La carte est désormais solidaire du caddie.	connecteur Clic!	connecteur Clic!
Légend	de		
		sur l'étiquette collée sur la carte PCMC	DIA.


NOTE: Pour le caddie supérieur (emplacement A), le contact métallique a été supprimé.

Montage de la carte mémoire dans l'automate

Pour installer la carte mémoire dans le processeur, effectuez les étapes suivantes :

Etape	Action
1	Retirez le cache de protection en le déverrouillant, puis en le tirant vers l'avant de l'automate.
2	Positionnez la carte PCMCIA équipée de son préhenseur (ou caddie) dans l'emplacement ainsi libéré. Faites glisser l'ensemble jusqu'à ce que la carte arrive en butée, puis appuyez sur le préhenseur (ou caddie) afin de connecter la carte.

Exemple: Positionnement de la carte dans l'emplacement A sur TSX 57 1•4 à 4•4.

NOTE : Pour les TSX 57 1-4\2-4\3-4\4-4, vérifiez que les détrompeurs mécaniques sont correctement positionnés :

- 1 rebord vers le haut;
- 2 rebords vers le bas.

Pour les processeurs TSX 57 5-4/TSX H57 -4M , deux guides assurent le positionnement de la carte PCMCIA dans son logement.

NOTE: Si le programme contenu dans la carte mémoire PCMCIA comporte l'option **RUN AUTO**, le processeur démarre automatiquement en mode **RUN** après insertion de la carte.

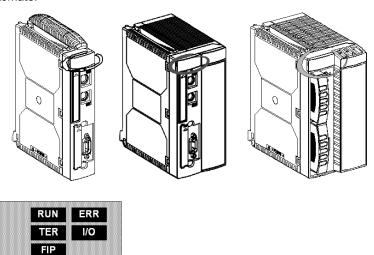
Chapitre 8

Processeurs TSX P57/TSX H57 : diagnostic

Objectif de ce chapitre

Ce chapitre présente le diagnostic effectué pour les processeurs TSX P57/TSX H57.

Contenu de ce chapitre


Ce chapitre contient les sujets suivants :

Sujet	Page
Visualisation	114
Précautions à prendre lors du remplacement d'un processeur TSX P57/TSX H57	116
Changement de la pile de sauvegarde mémoire RAM des processeurs TSX P57/TSX H57	117
Changement des piles d'une carte mémoire PCMCIA	120
Durées de vie des piles pour carte mémoire PCMCIA	124
Effet de l'action du bouton RESET du processeur	134
Recherche des défauts à partir des voyants d'état du processeur	135
Défauts non bloquants	136
Défauts bloquants	138
Défauts processeurs ou système	139

Visualisation

Présentation

Cinq voyants sur le panneau avant du processeur permettent un diagnostic rapide sur l'état de l'automate.

Description

Le tableau suivant décrit le rôle de chaque voyant.

Voyants	Allumé ●	Clignotement ⊗	Eteint
RUN (vert)	Automate en marche normale, exécution du programme	Automate en mode STOP ou en défaut logiciel bloquant	Automate non configuré : application absente, non valide ou incompatible
RUN (TSX H57) (vert)	Automate fonctionnant en mode primaire, exécution complète du programme	 2,5 s allumé, 500 ms éteint : automate fonctionnant en mode Redondant, exécution de la première section uniquement 500 ms allumé, 2,5 s éteint : automate fonctionnant en mode local, aucune exécution de programme 2,5 s allumé, 500 ms éteint : automate en mode STOP ou en défaut logiciel bloquant 	Automate non configuré : application absente, non valide ou incompatible
ERR (rouge)	Défaut processeur ou système	 Automate non configuré (application absente, non valide ou incompatible) Automate en défaut logiciel bloquant défaut pile carte mémoire Défaut bus X 	Etat normal, pas de défaut interne
I/O (rouge)	Défaut d'entrées/de sorties en provenance d'un module, d'une voie ou défaut de configuration	Défaut bus X	Etat normal, pas de défaut interne
TER (jaune)	-	Liaison prise terminal active. L'intensité du clignotement est fonction du trafic.	Liaison inactive
FIP (jaune)	-	Liaison bus Fipio active. L'intensité du clignotement est fonction du trafic.	Liaison inactive

NOTE:

- Un défaut bus X est signalé par un clignotement simultané des voyants ERR et I/O
- Le voyant FIP est présent uniquement sur les processeurs TSX P57 x54 et TSX P57 x84.

Précautions à prendre lors du remplacement d'un processeur TSX P57/TSX H57

Important

▲ AVERTISSEMENT

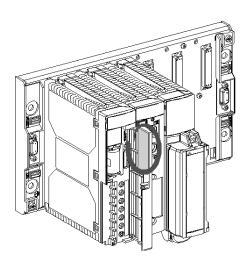
COMPORTEMENT INATTENDU DE L'EQUIPEMENT

Pour remplacer le processeur TSX P57 par un autre processeur non vierge (le processeur a déjà été programmé et contient une application), il faut couper l'alimentation de toutes les unités de commande de la station automate.

Avant de remettre les unités de commande sous tension, vérifiez que le processeur contient l'application requise.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Changement de la pile de sauvegarde mémoire RAM des processeurs TSX P57/TSX H57

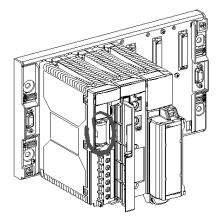

Introduction

Cette pile située sur le module d'alimentation TSX PSY... (voir page 258) assure la sauvegarde de la mémoire RAM interne du processeur et de l'horodateur en cas de coupure de la tension secteur. Livrée dans le même conditionnement que le module d'alimentation, elle doit être mise en place par l'utilisateur.

Mise en place de la pile

Effectuez les étapes suivantes :

Etape	Action
1	Ouvrez le volet d'accès situé en face avant du module d'alimentation.
2	Positionnez la pile dans son logement en prenant soin de respecter les polarités, comme indiqué sur la gravure.
3	Fermez le volet d'accès.



Changement de la pile

La pile peut être changée à titre préventif tous les ans ou lorsque le voyant **BAT** s'allume.

Pour cela, utilisez la même séquence que pour la mise en place et effectuez les étapes suivantes :

Etape	Action
1	Ouvrez le volet d'accès à la pile.
2	Retirez la pile défectueuse de son logement.
3	Mettez en place la nouvelle pile.
4	Fermez et verrouillez le volet d'accès.

S'il y a coupure de l'alimentation pendant le changement de la pile, la sauvegarde de la mémoire RAM est assurée par le processeur qui dispose en local d'une autonomie de sauvegarde.

NOTE: pour ne pas oublier de changer la pile, il est conseillé de noter la date de son prochain changement à l'emplacement prévu à cet effet à l'intérieur du volet.

Fréquence de changement de la pile

Durée de sauvegarde par la pile

Le temps pendant lequel la pile assure sa fonction de sauvegarde de la mémoire RAM interne du processeur et de l'horodateur dépend de deux facteurs :

- le pourcentage de temps où l'automate est hors tension et donc où la pile est sollicitée,
- la température ambiante lorsque l'automate est hors tension.

Tableau récapitulatif :

Température ambiante hors fonctionnement		≤ 30 °C	40 °C	50 °C	60 °C
Temps de sauvegarde	Automate hors tension 12h/j	5 ans	3 ans	2 ans	1 an
	Automate hors tension 1h/j	5 ans	5 ans	4,5 ans	4 ans

Autonomie de sauvegarde par le processeur

Les processeurs disposent en local d'une autonomie de sauvegarde de la mémoire RAM interne du processeur et de l'horodateur permettant le démontage :

• de la pile, de l'alimentation ou du processeur TSX P57/TSX H57.

Le temps de sauvegarde dépend de la température ambiante.

Dans l'hypothèse où le processeur était précédemment sous tension, le temps garanti varie de la manière suivante :

Température ambiante durant la mise hors tension	20 °C	30 °C	40 °C	50 °C
Temps de sauvegarde	2 h	45 mn	20 mn	8 mn

Changement des piles d'une carte mémoire PCMCIA

Généralités

Les cartes mémoire :

- TSX MRP P• RAM standard
- TSX MRP C• RAM pour fichiers et application et TSX MCP C• Flash EPROM
- TSX MRP F• type données et fichier

comportent 2 piles de sauvegarde TSX BAT M02 (principale) et TSX BAT M03 (auxiliaire) qu'il est nécessaire de remplacer régulièrement.

Deux méthodes sont possibles :

- une préventive, basée sur un changement périodique des piles, sans contrôle préalable de leur état,
- une prédictive, basée sur le signal remonté par un bit système, mais possible uniquement pour certaines cartes mémoire.

Méthode préventive

Cette méthode est valable pour toutes les versions de cartes mémoire et pour tous les automates qui emploient ces cartes (Premium, Quantum, Atrium). Changez les deux piles selon la version de la carte PCMCIA, l'utilisation de l'automate et la durée de vie des piles (voir page 124). L'ordre de remplacement des deux piles n'a pas d'importance : l'application est préservée par la carte mémoire. Pour plus d'informations sur le changement des piles, reportez-vous aux instructions de service livrées avec les cartes mémoire.

NOTE:

- Les piles ne doivent pas être ôtées simultanément de leur emplacement. Une pile sauvegarde les données et applications pendant que l'autre est remplacée.
- Installez les piles comme indiqué dans les schémas suivants, en prêtant attention à la polarité (+ et -).
- La carte mémoire ne doit pas rester plus de 24 h sans sa pile principale en état de fonctionnement.
- Pour économiser les piles auxiliaires, il est possible de ne les remplacer que tous les 18 mois (leur durée de vie). Dans ce cas, pour certaines cartes mémoire, il faudra penser à changer la pile auxiliaire une fois sur trois.
- Les durées de vie présentées ci-dessus ont été calculées dans le cas le plus défavorable : température ambiante autour de l'automate de 60°C, et automate sous tension pendant 21 % du temps dans l'année (ce qui correspond à une rotation de 8 h par jour et 30 jours d'arrêt pour maintenance dans l'année).

Méthode prédictive

Il s'agit d'une maintenance basée sur l'exploitation des bits \\$S67 et \\$S75 et de la diode ERR de la face avant du Premium. Cette méthode suppose que la pile auxiliaire soit changée préventivement tous les 18 mois. Elle n'est possible que :

- avec Unity Pro ≥ 2.02,
 Unity Pro est l'ancien nom de Control Expert pour les versions 13.1 et antérieures.
- si la carte mémoire est montée dans l'emplacement PCMCIA du haut sur tous les processeurs Premium et Quantum,
- si la carte mémoire est montée dans l'emplacement PCMCIA inférieur sur tous les processeurs Premium TSX P57 4••, TSX P57 5••, TSX P57 6•• et Quantum.

Quand le bit système \$\$67 (carte dans l'emplacement supérieur) ou \$\$75 (carte dans l'emplacement inférieur) passe à 1 ou que la diode ERR située sur le panneau avant du processeur clignote, la charge de la pile principale est faible. Vous avez 8 jours pour procéder au remplacement de la pile, comme indiqué dans les instructions de service livrées avec les cartes mémoire.

NOTE: Si l'automate doit être laissé hors tension ou si la carte mémoire doit rester hors de l'automate plus de 8 jours, et que vous ayez dépassé la durée de vie de la pile principale, faites une sauvegarde de l'application dans Control Expert.

Remplacement des piles

Effectuez les étapes suivantes :

Etape	Action
1	Sortez la carte de son emplacement (voir page 109).
2	Retirez la carte PCMCIA (voir page 109) de son préhenseur (ou de son caddie).
3	Tenez la carte PCMCIA de façon à pouvoir accéder l'emplacement de la pile, cà-d. à l'extrémité de la carte sans compter le connecteur.
4	Remplacement de la pile TSX BAT M02 : voir le tableau 1. Remplacement de la pile TSX BAT M03 : voir le tableau 2.
5	Fixez la carte PCMCIA (voir page 109) dans son préhenseur (ou son caddie).
6	Remettez en place la carte dans l'automate. (voir page 109)

Procédure pour la pile TSX BAT M02

Le tableau suivant présente la procédure pour le changement de la pile principale :

Etape	Action	Illustration
1	Basculez le levier inverseur vers la pile TSX BAT M02 (MAIN) afin de retirer le tiroir de la pile principale.	
2	Retirez la pile usagée de son support :	
3	Placez la pile neuve dans son support en respectant la polarité.	
4	Insérez le support contenant la pile dans la carte.	

Procédure pour la pile TSX BAT M03 :

Le tableau suivant présente la procédure pour le changement de la pile auxiliaire :

Etape	Action	Illustration
1	Basculez le levier inverseur vers la pile TSX BAT M03 (AUX) afin de retirer le tiroir de la pile.	
2	Retirez la pile usagée de son support :	
3	Placez la pile neuve dans son support en respectant la polarité.	+
4	Insérez le support contenant la pile dans la carte.	

Durées de vie des piles pour carte mémoire PCMCIA

Rôle

Ce document a pour but de fournir les informations détaillées à propos des durées de vie des piles à l'intérieur des cartes mémoire PCMCIA. L'estimation de ces durées de vie sont basées sur les données fournies par les fabricants de composants.

Conditions de l'étude

La durée de vie des piles est estimée dans les conditions suivantes :

- cartes RAM PCMCIA,
- pour les trois versions de produit (PV = Product Version) : PV1/2/3, PV4/5 et PV6;
- dans quatre conditions de température ambiante pour l'emplacement de l'automate : 25°C / 40°C / 50°C / 60°C.
- pour quatre différents types d'utilisation des cartes mémoire PCMCIA: 100%, 92%, 66% et 33% du temps de l'état sous tension de l'automate. Ces valeurs, pour les configurations client suivantes, sont:
 - 100%: automate sous tension tout au long de l'année ou pendant 51 semaines,
 - o 92%: automate sous tension tout au long de l'année, sauf pendant un mois (maintenance),
 - 66%: automate sous tension tout au long de l'année, excepté les week-end et un mois (maintenance),
 - 33%: automate sous tension tout au long de l'année, 12 heures par jour, excepté les weekend et un mois (maintenance),
- pour une valeur Min (minimum) et une valeur type de durée de vie :
 - La valeur Min est estimée à partir des caractéristiques les plus pessimistes fournies par les fabricants de composants. La durée de vie réellement observée sera supérieure à cette valeur.
 - O La valeur type est estimée à partir des caractéristiques type des composants.

Durée de vie de la pile principale PV1/2/3 des cartes mémoire PCMCIA (en années)

Le tableau ci-dessous donne les durées de vie des piles principales TSX BAT M01(PV1/2/3) pour cartes mémoire PCMCIA :

PV1/2/3	Par une température ambiante de 25°C								
	Automate sous tension à 100 %		tension à	Automate sous tension à 92 % (sauf 30 j maint.)		e sous à 66 % (sauf 0 j maint.)	Automate sous tension à 33 % (12 h/j, sauf Wet 30 j maint.)		
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	7.10	7.10	6.71	5.58	5.77	3.36	4.82	2.20	
TSX MCP C 512K	7.10	7.10	6.71	5.65	5.77	3.46	4.82	2.28	
TSX MCP C 002M	7.10	7.10	6.29	3.82	4.66	1.57	3.45	0.88	
TSX MRP P128K	7.10	7.10	6.71	5.58	5.77	3.36	4.82	2.20	
TSX MRP P224K	7.10	7.10	6.71	5.65	5.77	3.46	4.82	2.28	
TSX MRP P384K	7.10	7.10	6.71	4.99	5.77	2.60	4.82	1.59	
TSX MRP C448K	7.10	7.10	6.29	4.65	4.66	2.24	3.45	1.33	
TSX MRP C768K	7.10	7.10	6.29	4.65	4.66	2.24	3.45	1.33	
TSX MRP C001M	7.10	7.10	5.91	3.95	3.91	1.66	2.68	0.94	
TSX MRP C01M7	7.10	7.10	5.58	3.43	3.36	1.32	2.20	0.72	
TSX MRP C002M	7.10	7.10	5.91	3.34	3.91	1.26	2.68	0.69	
TSX MRP C003M	7.10	7.10	5.58	2.60	3.36	0.87	2.20	0.47	
TSX MRP C007M	7.10	7.10	4.56	1.59	2.16	0.46	1.27	0.24	
TSX MRP F004M	7.10	7.10	5.58	2.60	3.36	0.87	2.20	0.47	
TSX MRP F008M	7.10	7.10	4.56	1.59	2.16	0.46	1.27	0.24	

PV1/2/3	Par une te	Par une température ambiante de 40°C									
			tension à 92 % (sauf		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)				
	Туре	Min	Туре	Min	Туре	Min	Туре	Min			
TSX MCP C 224K	3.55	3.55	3.54	3.20	3.54	2.46	3.48	1.87			
TSX MCP C 512K	3.55	3.55	3.54	3.22	3.54	2.51	3.48	1.93			
TSX MCP C 002M	3.55	3.55	3.42	2.53	3.08	1.34	2.71	0.82			
TSX MRP P128K	3.55	3.55	3.54	3.20	3.54	2.46	3.48	1.87			
TSX MRP P224K	3.55	3.55	3.54	3.22	3.54	2.51	3.48	1.93			
TSX MRP P384K	3.55	3.55	3.54	3.00	3.54	2.02	3.48	1.41			
TSX MRP C448K	3.55	3.55	3.42	2.87	3.08	1.80	2.71	1.20			

PV1/2/3	Par une t	Par une température ambiante de 40°C										
	Automate sous tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)					
	Туре	Min	Type Min		Туре	Min	Туре	Min				
TSX MRP C768K	3.55	3.55	3.42	2.87	3.08	1.80	2.71	1.20				
TSX MRP C001M	3.55	3.55	3.30	2.59	2.74	1.40	2.21	0.87				
TSX MRP C01M7	3.55	3.55	3.20	2.35	2.46	1.15	1.87	0.69				
TSX MRP C002M	3.55	3.55	3.30	2.31	2.74	1.11	2.21	0.65				
TSX MRP C003M	3.55	3.55	3.20	1.93	2.46	0.80	1.87	0.45				
TSX MRP C007M	3.55	3.55	2.84	1.31	1.75	0.44	1.16	0.24				
TSX MRP F004M	3.55	3.55	3.20	1.93	2.46	0.80	1.87	0.45				
TSX MRP F008M	3.55	3.55	2.84	1.31	1.75	0.44	1.16	0.24				

PV1/2/3	Par une	températu	re ambiante	e de 50°C					
	Automate sous tension à 100 %		tension à	Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	2.35	2.35	2.42	2.25	2.69	2.02	3.10	1.75	
TSX MCP C 512K	2.35	2.35	2.42	2.26	2.69	2.05	3.10	1.81	
TSX MCP C 002M	2.35	2.35	2.36	1.90	2.42	1.20	2.47	0.80	
TSX MRP P128K	2.35	2.35	2.42	2.25	2.69	2.02	3.10	1.75	
TSX MRP P224K	2.35	2.35	2.42	2.26	2.69	2.05	3.10	1.81	
TSX MRP P384K	2.35	2.35	2.42	2.15	2.69	1.71	3.10	1.34	
TSX MRP C448K	2.35	2.35	2.36	2.09	2.42	1.55	2.47	1.15	
TSX MRP C768K	2.35	2.35	2.36	2.09	2.42	1.55	2.47	1.15	
TSX MRP C001M	2.35	2.35	2.31	1.93	2.20	1.25	2.05	0.85	
TSX MRP C01M7	2.35	2.35	2.25	1.80	2.02	1.04	1.75	0.67	
TSX MRP C002M	2.35	2.35	2.31	1.77	2.20	1.01	2.05	0.64	
TSX MRP C003M	2.35	2.35	2.25	1.54	2.02	0.75	1.75	0.44	
TSX MRP C007M	2.35	2.35	2.07	1.12	1.51	0.42	1.11	0.23	
TSX MRP F004M	2.35	2.35	2.25	1.54	2.02	0.75	1.75	0.44	
TSX MRP F008M	2.35	2.35	2.07	1.12	1.51	0.42	1.11	0.23	

PV1/2/3	Par une t	Par une température ambiante de 60°C									
	Automate sous tension à 100 %		tension à 9	Automate sous tension à 92 % (sauf 30 j maint.)		sous 66 % (sauf j maint.)	Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)				
	Туре	Min	Туре	Min	Туре	Min	Туре	Min			
TSX MCP C 224K	1.57	1.57	1.63	1.56	1.91	1.54	2.40	1.50			
TSX MCP C 512K	1.57	1.57	1.63	1.56	1.91	1.56	2.40	1.54			
TSX MCP C 002M	1.57	1.57	1.61	1.38	1.77	1.01	2.00	0.74			
TSX MRP P128K	1.57	1.57	1.63	1.56	1.91	1.54	2.40	1.50			
TSX MRP P224K	1.57	1.57	1.63	1.56	1.91	1.56	2.40	1.54			
TSX MRP P384K	1.57	1.57	1.63	1.51	1.91	1.36	2.40	1.19			
TSX MRP C448K	1.57	1.57	1.61	1.47	1.77	1.25	2.00	1.04			
TSX MRP C768K	1.57	1.57	1.61	1.47	1.77	1.25	2.00	1.04			
TSX MRP C001M	1.57	1.57	1.58	1.40	1.65	1.05	1.72	0.78			
TSX MRP C01M7	1.57	1.57	1.56	1.33	1.54	0.90	1.50	0.63			
TSX MRP C002M	1.57	1.57	1.58	1.31	1.65	0.87	1.72	0.60			
TSX MRP C003M	1.57	1.57	1.56	1.18	1.54	0.67	1.50	0.42			
TSX MRP C007M	1.57	1.57	1.47	0.92	1.23	0.40	1.00	0.23			
TSX MRP F004M	1.57	1.57	1.56	1.18	1.54	0.67	1.50	0.42			
TSX MRP F008M	1.57	1.57	1.47	0.92	1.23	0.40	1.00	0.23			

Durée de vie de la pile principale PV4/5 des cartes mémoire PCMCIA (en années)

Le tableau ci-dessous donne les durées de vie des piles principales TSX BAT M02 (PV4/5) pour cartes mémoire PCMCIA :

PV4/5	Par une température ambiante de 25°C										
		Automate sous tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		te sous à 66 % (sauf 80 j maint.)	Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)				
	Туре	Min	Туре	Min	Туре	Min	Туре	Min			
TSX MCP C 224K	7.22	7.22	7.15	6.27	7.02	4.48	6.76	3.23			
TSX MCP C 512K	7.22	7.22	7.15	6.33	7.02	4.59	6.76	3.35			
TSX MCP C 002M	7.22	7.22	6.83	4.69	5.90	2.25	4.96	1.33			
TSX MRP P128K	7.22	7.22	7.15	6.27	7.02	4.48	6.76	3.23			
TSX MRP P224K	7.22	7.22	7.15	6.33	7.02	4.59	6.76	3.35			
TSX MRP P384K	7.22	7.22	7.15	5.77	7.02	3.57	6.76	2.36			
TSX MRP C448K	7.22	7.22	6.83	5.47	5.90	3.12	4.96	1.99			

PV4/5	Par une	Par une température ambiante de 25°C									
	Automate sous tension à 100 %		tension à	Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		e sous tension I2 h/j, sauf WE aint.)			
	Туре	Min	Туре	Type Min 1		Min	Туре	Min			
TSX MRP C768K	7.22	7.22	6.83	5.47	5.90	3.12	4.96	1.99			
TSX MRP C001M	7.22	7.22	6.54	4.82	5.09	2.37	3.91	1.41			
TSX MRP C01M7	7.22	7.22	6.27	4.30	4.48	1.91	3.23	1.10			
TSX MRP C002M	7.22	7.22	6.54	4.20	5.09	1.83	3.91	1.04			
TSX MRP C003M	7.22	7.22	6.27	3.41	4.48	1.29	3.23	0.71			
TSX MRP C007M	7.22	7.22	5.39	2.21	3.02	0.70	1.91	0.37			
TSX MRP F004M	7.22	7.22	6.27	3.41	4.48	1.29	3.23	0.71			
TSX MRP F008M	7.22	7.22	5.39	2.21	3.02	0.70	1.91	0.37			

PV4/5	Par une température ambiante de 40°C								
	Automate sous tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)		
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	4.63	4.63	4.72	4.32	5.09	3.61	5.59	2.94	
TSX MCP C 512K	4.63	4.63	4.72	4.35	5.09	3.68	5.59	3.04	
TSX MCP C 002M	4.63	4.63	4.58	3.51	4.48	2.00	4.30	1.28	
TSX MRP P128K	4.63	4.63	4.72	4.32	5.09	3.61	5.59	2.94	
TSX MRP P224K	4.63	4.63	4.72	4.35	5.09	3.68	5.59	3.04	
TSX MRP P384K	4.63	4.63	4.72	4.08	5.09	2.99	5.59	2.20	
TSX MRP C448K	4.63	4.63	4.58	3.93	4.48	2.68	4.30	1.87	
TSX MRP C768K	4.63	4.63	4.58	3.93	4.48	2.68	4.30	1.87	
TSX MRP C001M	4.63	4.63	4.45	3.58	4.00	2.10	3.49	1.35	
TSX MRP C01M7	4.63	4.63	4.32	3.29	3.61	1.73	2.94	1.06	
TSX MRP C002M	4.63	4.63	4.45	3.23	4.00	1.66	3.49	1.01	
TSX MRP C003M	4.63	4.63	4.32	2.74	3.61	1.21	2.94	0.69	
TSX MRP C007M	4.63	4.63	3.89	1.91	2.60	0.67	1.80	0.36	
TSX MRP F004M	4.63	4.63	4.32	2.74	3.61	1.21	2.94	0.69	
TSX MRP F008M	4.63	4.63	3.89	1.91	2.60	0.67	1.80	0.36	

PV4/5	Par une température ambiante de 50°C								
	Automate sous tension à 100 %		tension à	Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		e sous tension 12 h/j, sauf WE aint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	2.58	2.58	2.69	2.56	3.12	2.50	3.89	2.39	
TSX MCP C 512K	2.58	2.58	2.69	2.56	3.12	2.53	3.89	2.45	
TSX MCP C 002M	2.58	2.58	2.64	2.25	2.88	1.61	3.22	1.16	
TSX MRP P128K	2.58	2.58	2.69	2.56	3.12	2.50	3.89	2.39	
TSX MRP P224K	2.58	2.58	2.69	2.56	3.12	2.53	3.89	2.45	
TSX MRP P384K	2.58	2.58	2.69	2.47	3.12	2.18	3.89	1.88	
TSX MRP C448K	2.58	2.58	2.64	2.41	2.88	2.01	3.22	1.63	
TSX MRP C768K	2.58	2.58	2.64	2.41	2.88	2.01	3.22	1.63	
TSX MRP C001M	2.58	2.58	2.60	2.28	2.68	1.67	2.74	1.23	
TSX MRP C01M7	2.58	2.58	2.56	2.15	2.50	1.42	2.39	0.98	
TSX MRP C002M	2.58	2.58	2.60	2.13	2.68	1.38	2.74	0.94	
TSX MRP C003M	2.58	2.58	2.56	1.90	2.50	1.05	2.39	0.66	
TSX MRP C007M	2.58	2.58	2.40	1.46	1.97	0.62	1.58	0.35	
TSX MRP F004M	2.58	2.58	2.56	1.90	2.50	1.05	2.39	0.66	
TSX MRP F008M	2.58	2.58	2.40	1.46	1.97	0.62	1.58	0.35	

PV4/5	Par une température ambiante de 60°C								
	Automate sous tension à 100 %		tension à	tension à 92 % (sauf te		Automate sous tension à 66 % (sauf WE et 30 j maint.)		e sous tension 12 h/j, sauf WE aint.)	
	Туре	Min	Туре	Type Min 1		Min	Туре	Min	
TSX MCP C 224K	1.75	1.75	1.84	1.78	2.21	1.88	2.95	2.00	
TSX MCP C 512K	1.75	1.75	1.84	1.78	2.21	1.90	2.95	2.04	
TSX MCP C 002M	1.75	1.75	1.82	1.62	2.09	1.33	2.55	1.06	
TSX MRP P128K	1.75	1.75	1.84	1.78	2.21	1.88	2.95	2.00	
TSX MRP P224K	1.75	1.75	1.84	1.78	2.21	1.90	2.95	2.04	
TSX MRP P384K	1.75	1.75	1.84	1.73	2.21	1.70	2.95	1.63	
TSX MRP C448K	1.75	1.75	1.82	1.71	2.09	1.59	2.55	1.44	
TSX MRP C768K	1.75	1.75	1.82	1.71	2.09	1.59	2.55	1.44	
TSX MRP C001M	1.75	1.75	1.80	1.64	1.98	1.37	2.24	1.11	

PV4/5	Par une	Par une température ambiante de 60°C						
	Automate sous tension à 100 %				Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min
TSX MRP C01M7	1.75	1.75	1.78	1.57	1.88	1.20	2.00	0.91
TSX MRP C002M	1.75	1.75	1.80	1.56	1.98	1.17	2.24	0.87
TSX MRP C003M	1.75	1.75	1.78	1.44	1.88	0.92	2.00	0.62
TSX MRP C007M	1.75	1.75	1.70	1.17	1.56	0.57	1.40	0.34
TSX MRP F004M	1.75	1.75	1.78	1.44	1.88	0.92	2.00	0.62
TSX MRP F008M	1.75	1.75	1.70	1.17	1.56	0.57	1.40	0.34

Durée de vie de la pile principale PV6 des cartes mémoire PCMCIA (en années)

Le tableau ci-dessous donne les durées de vie des piles principales TSX BAT M02 (PV6) pour cartes mémoire PCMCIA :

PV6	Par une	températu	re ambiante	de 25°C					
		Automate sous tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	7.2	7.2	7.2	6.3	7.0	4.5	6.8	3.2	
TSX MCP C 512K	7.2	7.2	7.2	6.5	7.0	5.1	6.8	3.9	
TSX MCP C 002M	7.2	7.2	6.8	5.8	5.9	3.6	5.0	2.4	
TSX MRP P128K	7.2	7.2	7.2	6.3	7.0	4.5	6.8	3.2	
TSX MRP P224K	7.2	7.2	7.2	6.5	7.0	5.1	6.8	3.9	
TSX MRP P384K	7.2	7.2	7.2	6.5	7.0	5.1	6.8	3.9	
TSX MRP C448K	7.2	7.2	6.8	5.8	5.9	3.6	5.0	2.4	
TSX MRP C768K	7.2	7.2	6.8	5.8	5.9	3.6	5.0	2.4	
TSX MRP C001M	7.2	7.2	6.5	5.2	5.1	2.8	3.9	1.7	
TSX MRP C01M7	7.2	7.2	6.3	4.7	4.5	2.3	3.2	1.4	
TSX MRP C002M	7.2	7.2	6.5	5.2	5.1	2.8	3.9	1.7	
TSX MRP C003M	7.2	7.2	6.3	4.7	4.5	2.3	3.2	1.4	
TSX MRP C007M	7.2	7.2	5.4	3.5	3.0	1.3	1.9	0.7	
TSX MRP F004M	7.2	7.2	6.3	4.7	4.5	2.3	3.2	1.4	
TSX MRP F008M	7.2	7.2	5.4	3.5	3.0	1.3	1.9	0.7	

35010525 12/2018

PV6	Par une	températu	re ambiante	de 40°C					
		Automate sous tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	4.6	4.6	4.7	4.3	5.1	3.6	5.6	2.9	
TSX MCP C 512K	4.6	4.6	4.7	4.4	5.1	4.0	5.6	3.5	
TSX MCP C 002M	4.6	4.6	4.6	4.1	4.5	3.0	4.3	2.2	
TSX MRP P128K	4.6	4.6	4.7	4.3	5.1	3.6	5.6	2.9	
TSX MRP P224K	4.6	4.6	4.7	4.4	5.1	4.0	5.6	3.5	
TSX MRP P384K	4.6	4.6	4.7	4.4	5.1	4.0	5.6	3.5	
TSX MRP C448K	4.6	4.6	4.6	4.1	4.5	3.0	4.3	2.2	
TSX MRP C768K	4.6	4.6	4.6	4.1	4.5	3.0	4.3	2.2	
TSX MRP C001M	4.6	4.6	4.4	3.8	4.0	2.4	3.5	1.6	
TSX MRP C01M7	4.6	4.6	4.3	3.5	3.6	2.0	2.9	1.3	
TSX MRP C002M	4.6	4.6	4.4	3.8	4.0	2.4	3.5	1.6	
TSX MRP C003M	4.6	4.6	4.3	3.5	3.6	2.0	2.9	1.3	
TSX MRP C007M	4.6	4.6	3.9	2.8	2.6	1.2	1.8	0.7	
TSX MRP F004M	4.6	4.6	4.3	3.5	3.6	2.0	2.9	1.3	
TSX MRP F008M	4.6	4.6	3.9	2.8	2.6	1.2	1.8	0.7	

PV6	Par une t	Par une température ambiante de 50°C							
		tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	2.6	2.6	2.7	2.6	3.1	2.5	3.9	2.4	
TSX MCP C 512K	2.6	2.6	2.7	2.6	3.1	2.7	3.9	2.7	
TSX MCP C 002M	2.6	2.6	2.6	2.5	2.9	2.2	3.2	1.9	
TSX MRP P128K	2.6	2.6	2.7	2.6	3.1	2.5	3.9	2.4	
TSX MRP P224K	2.6	2.6	2.7	2.6	3.1	2.7	3.9	2.7	
TSX MRP P384K	2.6	2.6	2.7	2.6	3.1	2.7	3.9	2.7	
TSX MRP C448K	2.6	2.6	2.6	2.5	2.9	2.2	3.2	1.9	
TSX MRP C768K	2.6	2.6	2.6	2.5	2.9	2.2	3.2	1.9	
TSX MRP C001M	2.6	2.6	2.6	2.4	2.7	1.9	2.7	1.5	

PV6	Par une	Par une température ambiante de 50°C							
	Automate sous tension à 100 %		tension à	Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)	
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MRP C01M7	2.6	2.6	2.6	2.3	2.5	1.6	2.4	1.2	
TSX MRP C002M	2.6	2.6	2.6	2.4	2.7	1.9	2.7	1.5	
TSX MRP C003M	2.6	2.6	2.6	2.3	2.5	1.6	2.4	1.2	
TSX MRP C007M	2.6	2.6	2.4	1.9	2.0	1.1	1.6	0.7	
TSX MRP F004M	2.6	2.6	2.6	2.3	2.5	1.6	2.4	1.2	
TSX MRP F008M	2.6	2.6	2.4	1.9	2.0	1.1	1.6	0.7	

PV6	Par une t	empérature	ambiante d	Par une température ambiante de 60°C					
	Automate sous tension à 100 %		Automate sous tension à 92 % (sauf 30 j maint.)		Automate sous tension à 66 % (sauf WE et 30 j maint.)		Automate sous tension à 33 % (12 h/j, sauf WE et 30 j maint.)		
	Туре	Min	Туре	Min	Туре	Min	Туре	Min	
TSX MCP C 224K	1.8	1.8	1.8	1.8	2.2	1.9	3.0	2.0	
TSX MCP C 512K	1.8	1.8	1.8	1.8	2.2	2.0	3.0	2.2	
TSX MCP C 002M	1.8	1.8	1.8	1.7	2.1	1.7	2.5	1.6	
TSX MRP P128K	1.8	1.8	1.8	1.8	2.2	1.9	3.0	2.0	
TSX MRP P224K	1.8	1.8	1.8	1.8	2.2	2.0	3.0	2.2	
TSX MRP P384K	1.8	1.8	1.8	1.8	2.2	2.0	3.0	2.2	
TSX MRP C448K	1.8	1.8	1.8	1.7	2.1	1.7	2.5	1.6	
TSX MRP C768K	1.8	1.8	1.8	1.7	2.1	1.7	2.5	1.6	
TSX MRP C001M	1.8	1.8	1.8	1.7	2.0	1.5	2.2	1.3	
TSX MRP C01M7	1.8	1.8	1.8	1.6	1.9	1.3	2.0	1.1	
TSX MRP C002M	1.8	1.8	1.8	1.7	2.0	1.5	2.2	1.3	
TSX MRP C003M	1.8	1.8	1.8	1.6	1.9	1.3	2.0	1.1	
TSX MRP C007M	1.8	1.8	1.7	1.4	1.6	0.9	1.4	0.6	
TSX MRP F004M	1.8	1.8	1.8	1.6	1.9	1.3	2.0	1.1	
TSX MRP F008M	1.8	1.8	1.7	1.4	1.6	0.9	1.4	0.6	

Durée de vie minimale de la pile principale, automate hors tension

Dans un automate hors tension, la durée de vie minimum de la pile principale est de 6 mois dans les PCMCIA PV6.

Durée de vie de la pile auxiliaire

La pile auxiliaire TSX BATM 03 est incluse dans le produit PCMCIA. Quels que soient les types d'utilisation et la température ambiante, la durée de vie de la pile auxiliaire est de :

- 5 ans pour PV1/2/3
- 1,7 ans pour PV4/5
- 5 ans pour PV6

35010525 12/2018

Effet de l'action du bouton RESET du processeur

Généralités

Tous les processeurs possèdent un bouton RESET sur leur face avant qui, lorsqu'actionné, entraîne un démarrage à froid de l'automate et son passage en mode RUN ou STOP (un démarrage en mode RUN ou STOP est défini lors de la configuration) sur l'application contenue dans la carte mémoire (ou dans la RAM interne) ...

Redémarrage à froid suite à un défaut détecté par le processeur

Dès que le processeur détecte un défaut, le relais d'alarme sur le rack 0 (hébergeant le processeur TSX 57) est désactivé (contact ouvert) et les sorties du module passent en position de repli ou sont maintenues en l'état actuel suivant l'option sélectionnée dans la configuration. Une action sur le bouton de RESET provoque un démarrage à froid de l'automate forcé en STOP.

NOTE: Si le bouton RESET est enfoncé, et pendant le démarrage à froid de l'automate, la liaison au terminal est désactivée.

Recherche des défauts à partir des voyants d'état du processeur

Généralités

Les voyants d'état situés sur le processeur permettent de renseigner l'utilisateur sur le mode de marche de l'automate et sur ses éventuels défauts.

Les défauts détectés par l'automate concernent :

- les circuits constituants l'automate et/ou ses modules : défauts internes
- le procédé piloté par l'automate ou le câblage du procédé : défauts externes
- le fonctionnement de l'application exécutée par l'automate : défauts internes ou externes

Détection des défauts

La détection des défauts s'effectue en cours de démarrage (autotest) ou pendant le fonctionnement (c'est le cas de la plupart des défauts matériel), pendant les échanges avec les modules ou lors de l'exécution d'une instruction du programme.

Certains défauts « graves » nécessitent un redémarrage de l'automate, d'autres sont à la charge de l'utilisateur qui décide du comportement à adopter en fonction du niveau d'application souhaité.

On distingue 3 types de défauts :

- non bloquants,
- bloquants,
- processeur ou système.

Défauts non bloquants

Généralités

Il s'agit d'une anomalie, provoquée par un défaut d'entrées/sorties sur le bus X, sur le bus Fipio ou par l'exécution d'une instruction. Elle peut être traitée par le programme utilisateur et ne modifie pas l'état de l'automate.

Défauts non bloquant liés aux entrées/sorties

L'indication d'un défaut non bloquant lié aux entrées/sorties est signalée par :

- le voyant d'état I/O du processeur allumé
- les voyants d'état I/O des modules en défauts allumés, (sur bus X et sur bus Fipio)
- les bits et mots de défaut associés à la voie :
 - Entrées/sorties sur bus X :
 bit %I
 bit %I
 c>.ERR = 1 indique une voie en défaut (échanges implicites)
 mots %MW
 c>.2 indique le type de défaut voie (échanges explicites)
 - Entrées/sorties sur bus Fipio :
 bit %I\2.<e>\0.<m>.<c>.ERR = 1 indique une voie en défaut (échanges implicites)
 mots %MW\2.<e>\0.<m>.<c>.2 indique le type de défauts voie (échanges explicites)
- les bits et mots défaut associés au module :
 - O Module sur bus X:
 - bit %I<r>.<m>.MOD.ERR = 1 indique un module en défaut (échanges implicites) mots %MW<r>.<m>.MOD.2 indique le type de défaut module (échanges explicites)
 - Module sur bus Fipio :
 bit %I\2.<e>\0.0.MOD.ERR = 1 indique un module en défaut (échanges implicites)
 mots %MW\2.<e>\0.0.MOD.2 indique le type de défaut module (échanges explicites)

• les bits système :

%S10 : défaut E/S (sur bus X et sur bus Fipio)

%S16: défaut E/S (sur bus X et sur bus Fipio) dans la tâche en cours

%S40 à %S47 : défaut E/S dans racks d'adresse 0 à 7 sur bus X.

Tableau de diagnostic :

Voyant	Voyant d'état		Bits système	Défauts		
RUN	ERR	I/O				
i	i	A	%S10	Défaut d'entrées/sorties : défaut d'alimentation voie, voie disjonctée, module non conforme à la configuration, hors service, défaut d'alimentation module.		
i	i	Α	%S16	Défaut d'entrées/sorties dans une tâche.		
i	i	A	%S40 à %S47	Défaut d'entrées/sortie au niveau d'un rack (%S40 : rack 0,%S47 : rack 7)		

Légende :

A : Voyant allumé i : Etat indéterminé.

Défauts non bloquant liés à l'exécution du programme

L'indication d'un défaut non bloquant lié à l'exécution du programme est signalée par la mise à l'état 1 de l'un ou des bits système %S15, %S18, %S20.

Le test et la mise à l'état 0 de ces bits système sont à la charge de l'utilisateur.

Tableau de diagnostic :

Voyant d'état Bits		Bits	Défauts				
RUN	ERR	I/O	système				
Α	i	i	%S15=1	Erreur de manipulation d'une chaîne de caractères			
Α	i	i	%S18=1	Débordement de capacité, erreur sur flottant ou division par 0			
Α	i	i	%S20=1	Débordement d'index			

Légende:

A: Voyant allumé

i : Etat indéterminé

NOTE: La fonction diagnostic programme, accessible à partir du logiciel de programmation ou le bit %S78 lorsqu'il est mis à , permettent de rendre bloquant ces défauts non bloquants liés à l'exécution du programme. La nature du défaut est indiquée dans le mot système %SW 125.

Défauts bloquants

Généralités

Ces défauts, provoqués par le programme application, ne permettent pas de continuer son exécution mais n'entraînent pas de défauts pour le système. Sur un tel défaut, l'application s'arrête immédiatement et passe dans l'état HALT (les tâches sont toutes arrêtées sur l'instruction courante).

Il y a alors 2 possibilités pour redémarrer l'application :

- par la commande INIT à partir du logiciel de programmation,
- par le bouton poussoir RESET du processeur.

L'application est alors dans un état initial : les données ont leurs valeurs initiales, les tâches sont arrêtées en fin de cycle, l'image des entrées est rafraîchie et les sorties sont commandées en position repli; la commande RUN permet le redémarrage de l'application.

L'indication d'un défaut bloquant est signalée par les voyants d'état (ERR et RUN) clignotant et selon la nature du défaut par la mise à l'état 1 de du bit système %S11. La nature du défaut est indiquée dans le mot système %SW 125.

Tableau de diagnostic :

Voyants d'é	Voyants d'état			Bits Défauts
RUN	ERR	I/O		
С	С	i	%S11=1	Débordement du chien de garde (overrun
С	С	i		Exécution de l'instruction HALT
С	С	i		Exécution d'un JUMP irrésolu

Légende:

C : clignotant i : indéterminé.

Défauts processeurs ou système

Généralités

Ces défauts graves relatifs soit au **processeur** (matériel ou logiciel), soit au **câblage du bus X** ne permettent plus d'assurer le fonctionnement correct du système. Ils entraînent un arrêt de l'automate en ERREUR qui nécessite un redémarrage à froid. Le prochain démarrage à froid sera forcé en STOP pour éviter que l'automate ne retombe en erreur.

NOTE: En cas de sélection d'un démarrage automatique en RUN dans la configuration de l'automate, le redémarrage est forcé en STOP et non en RUN.

Tableau de diagnostic :

Voyants	•		Mot système	Défauts			
RUN	ERR	I/O	%SW124				
E	А	Α	H'80'	Défaut de chien de garde système ou défaut de câblage sur le bus X			
E	Α	Α	H'81'	Défaut de câblage sur le bus X			
E	A	A		Défaut du code système, interruption non prévue Débordement des piles des tâches système Débordement des piles des tâches PL7			

Légende :

A : allumé

F: indéterminé

Diagnostic des défauts processeur :

Lorsque l'automate est arrêté en défaut, il n'est plus capable de communiquer avec un équipement de diagnostic. Les informations relatives aux défauts ne sont accessibles qu'après un démarrage à froid (voir mot système %SW124). En général ces informations ne sont pas exploitables par l'utilisateur, seule les informations H'80' et H'81' peuvent être utilisées pour diagnostiquer un défaut de câblage sur le bus X.

Chapitre 9 Processeurs TSX P57 0244

Caractéristiques générales des processeurs TSX P57 0244

Processeurs TSX P57 0244

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 0244.

Caractéristiques			TSX P57 0244			
Configuration	Nombre maxim	um de racks TSX RKY 12EX	1			
maximale	Nombre maxim	um de racks TSX RKY 4EX/6EX/8EX	1			
	Nombre d'empl	acements maximum	10			
	Nombre maxim	16				
Fonctions	Nombre	E/S TOR en rack	256			
	maximum de voies	E/S analogiques en rack	12			
	voies	Métier (comptage, axe)	4			
	Nombre	Uni-Telway intégré (prise terminal)	1			
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	1			
		Fipio maître (intégré)	-			
		Bus de terrain tiers	-			
		Bus de terrain AS-i	1			
	Horodateur sau	oui				
Mémoire	RAM interne sa	96 K8				
	Carte mémoire	Carte mémoire PCMCIA (capacité maximale)				
Structure	Tâche maître		1			
application	Tâche rapide		1			
	Traitements sur	r événements (1 prioritaire)	32			
Vitesse	RAM interne	100 % booléen	4.76 Kins/ms (1)			
d'exécution du code application		65 % booléen + 35 % numérique	3.57 Kins/ms (1)			
code application	carte PCMCIA	100 % booléen	3.10 Kins/ms (1)			
		65 % booléen + 35 % numérique	2.10 Kins/ms (1)			

Caractéristiques TSX P57 0					
Temps	Instruction booléenne de base	0.19/0.25 µs (2)			
d'exécution	Instruction numérique de base	0.25/0.50 µs (2)			
	Instruction sur flottants	1.75/3.30 µs (2)			
Overhead	Tâche maître	1 ms			
système	Tâche rapide	0.30 ms			

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 10 Processeur TSX P57 104

Caractéristiques générales des processeurs TSX P57 104

Processeur TSX P57 104

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 104.

Caractéristiques			TSX P57 104
Configuration maximale	Nombre maximum de racks TSX RKY 12E		2
	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		4
	Nombre d'emplacements maximum		27
	Nombre maximum d'EF de communication simultanées		16
Fonctions	Nombre maximum de voies	E/S TOR en rack	512
		E/S analogiques en rack	24
		Métier (comptage, axe)	8
	Nombre maximum de connexions	Uni-Telway intégré (prise terminal)	1
		Réseau (ETHWAY, Fipway, Modbus Plus)	1
		Fipio maître (intégré)	-
		Bus de terrain tiers	-
		Bus de terrain AS-i	2
	Horodateur sauvegardable		oui
Mémoire	RAM interne sauvegardable		96 K8
	Carte mémoire PCMCIA (capacité maximale)		224 K8
Structure application	Tâche maître		1
	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		32
Vitesse d'exécution du code application	RAM interne	100 % booléen	4.76 Kins/ms (1)
		65 % booléen + 35 % numérique	3.57 Kins/ms (1)
	carte PCMCIA	100 % booléen	3.10 Kins/ms (1)
		65 % booléen + 35 % numérique	2.10 Kins/ms (1)

Caractéristiques	TSX P57 104	
Temps d'exécution	Instruction booléenne de base	0.19/0.25 μs (2)
	Instruction numérique de base	0.25/0.50 μs (2)
	Instruction sur flottants	1.75/3.30 µs (2)
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.30 ms

⁽¹⁾ Kins: 1 024 instructions (liste)

⁽²⁾ La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 11 Processeur TSX P57 154

Caractéristiques générales des processeurs TSX P57 154

Processeurs TSX P 57 154

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 154.

Caractéristiques			TSX P 57 154
Configuration	Nombre maximum de racks TSX RKY 12EX		2
maximale	Nombre maximum de	racks TSX RKY 4EX/6EX/8EX	4
	Nombre d'emplaceme	ents maximum	27
	Nombre maximum d'E	EF de communication simultanées	16
Fonctions	Nombre maximum	E/S TOR en rack	512
	de voies	E/S analogiques en rack	24
		Métier (comptage, axe)	8
	Nombre maximum	Uni-Telway intégré (prise terminal)	1
	de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	1
		Fipio maître (intégré) : Nb de périphériques	63
		Bus de terrain tiers	0
		Bus de terrain AS-i	2
	Horodateur sauvegare	oui	
Mémoire	RAM interne sauvegardable		96 K8
	Carte mémoire PCMCIA (capacité maximale)		224 K8
Structure	Tâche maître		1
application	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		32
Vitesse	RAM interne	100 % booléen	4.76 Kins/ms (1)
d'exécution du code application		65 % booléen + 35 % numérique	3.57 Kins/ms (1)
code application	carte PCMCIA	100 % booléen	3.10 Kins/ms (1)
		65 % booléen + 35 % numérique	2.10 Kins/ms (1)

Caractéristiques	TSX P 57 154	
Temps	Instruction booléenne de base	0.19/0.25 µs (2)
d'exécution	Instruction numérique de base	0.25/0.50 μs (2)
	Instruction sur flottants	1.75/3.30 µs (2)
Overhead	Tâche maître	1 ms
système	Tâche rapide	0.3 ms

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 12 Processeur TSX P57 1634

Caractéristiques générales des processeurs TSX P57 1634

Processeurs TSX P57 1634

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 1634.

Caractéristiques			TSX P57 1634
Configuration	Nombre maximum de racks	2	
maximale	Nombre maximum de racks	TSX RKY 4EX/6EX/8EX	4
	Nombre d'emplacements ma	aximum	27
	Nombre maximum d'EF de d	communication simultanées	16
Fonctions	Nombre maximum de voies	E/S TOR en rack	512
		E/S analogiques en rack	24
		Métier (comptage, axe)	8
	Nombre maximum de	Uni-Telway intégré (prise terminal)	1
	connexions	Réseau (Ethernet intégré)	1
		Fipio maître (intégré)	-
		Bus de terrain tiers	-
		Bus de terrain AS-i	2
	Horodateur sauvegardable	oui	
Mémoire	RAM interne sauvegardable		96 K8
	Carte mémoire PCMCIA (ca	224 K8	
Structure	Tâche maître		1
application	Tâche rapide	1	
	Traitements sur événements	32	
Vitesse	RAM interne	100 % booléen	4.76 Kins/ms (1)
d'exécution du code application		65 % booléen + 35 % numérique	3.57 Kins/ms (1)
	carte PCMCIA	100 % booléen	3.10 Kins/ms (1)
		65 % booléen + 35 % numérique	2.10 Kins/ms (1)

Caractéristiques	TSX P57 1634	
Temps	Instruction booléenne de base	0.19/0.25 µs (2)
d'exécution	Instruction numérique de base	0.25/0.50 µs (2)
	Instruction sur flottants	1.75/3.30 µs (2)
Overhead	Tâche maître	1 ms
système	Tâche rapide	0.3 ms

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 13 Processeur TSX P57 204

Caractéristiques générales des processeurs TSX P57 204

Processeur TSX P57 204

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 204.

Caractéristiques		TSX P57 204	
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maxin	Nombre maximum de racks TSX RKY 4EX/6EX/8EX	
	Nombre d'emp	placements maximum	111
	Nombre maxin	num d'EF de communication simultanées	32
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	80
	voies	Métier (comptage, axe)	24
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	2
	connexions	Fipio maître (intégré)	-
		Bus de terrain tiers	1
		Bus de terrain AS-i	4
	Horodateur sauvegardable		oui
	Voies régulation		10
	Boucles de régulation		30
Mémoire	RAM interne sauvegardable		160 K8
	Carte mémoire PCMCIA (capacité maximale)		768 K8
Structure	Tâche maître		1
application	Tâche rapide	Tâche rapide	
	Traitements sur événements (1 prioritaire)		64
Vitesse	RAM interne	100 % booléen	4.76 Kins/ms (1)
d'exécution du		65 % booléen + 35 % numérique	3.57 Kins/ms (1)
code application	carte	100 % booléen	3.70 Kins/ms (1)
	PCMCIA	65 % booléen + 35 % numérique	2.50 Kins/ms (1)

Caractéristiques	TSX P57 204	
Temps	Instruction booléenne de base	0.19/0.21 µs (2)
d'exécution	Instruction numérique de base	0.25/0.42 µs (2)
	Instruction sur flottants	1.75/3.0 µs
Overhead	Tâche maître	1 ms
système	Tâche rapide	0.30 ms

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 14 Processeur TSX P57 254

Caractéristiques générales des processeurs TSX P57 254

Processeur TSX P57 254

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 254.

Caractéristiques			TSX P57 254
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'empla	acements maximum	111
	Nombre maximu	um d'EF de communication simultanées	32
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	80
	voies	Expert	24
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	2
	Connexions	Fipio maître (intégré), nb équipement	127
		Bus de terrain tiers	1
		Bus de terrain AS-i	4
	Horodateur sauvegardable		oui
	Voie régulation		10
	Boucles de régulation		30
Mémoire	RAM interne sauvegardable		192 K8
	Carte mémoire PCMCIA (capacité maximale)		768 K8
Structure	Tâche maître		1
application	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	4.76 Kins/ms (1)
du code application		65 % booléen + 35 % numérique	3.57 Kins/ms (1)
	carte PCMCIA	100 % booléen	3.70 Kins/ms (1)
		65 % booléen + 35 % numérique	2.50 Kins/ms (1)

Caractéristiques			TSX P57 254	
Temps d'exécution	Instruction boolé	Instruction booléenne de base		
	Instruction numé	érique de base	0.25/0.42 µs (2)	
	Instruction sur fl	Instruction sur flottants		
Overhead système	Tâche MAST sans utilisation du bus Fipio		1 ms	
	avec utilisation du bus Fipio		1 ms	
	Tâche FAST		0.35 ms	

(1) Kins: 1 024 instructions (liste)

⁽²⁾ La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 15 Processeur TSX P57 2634

Caractéristiques générales des processeurs TSX P57 2634

Processeurs TSX P57 2634

Le tableau suivant présente les caractéristiques générales du processeur TSX P57 2634.

Caractéristiques	TSX P 57 2634		
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maxim	um de racks TSX RKY 4EX/6EX/8EX	16
	Nombre d'empla	acements maximum	111
	Nombre maxim	um d'EF de communication simultanées	32
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	80
	voies	Métier (comptage, axe)	24
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (Ethway, Fipway, Modbus Plus et Ethernet intégré)	2
		Fipio maître (intégré)	-
		Bus de terrain tiers	1
		Bus de terrain AS-i	4
	Horodateur sauvegardable		oui
	Voie régulation		10
	Boucle de régulation		30
Mémoire	RAM interne sauvegardable		160 K8
	Carte mémoire PCMCIA (capacité maximale)		768 K8
Structure	Tâche maître		1
application	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution du code application	RAM interne	100 % booléen	4.76 Kins/ms (1)
		65 % booléen + 35 % numérique	3.57 Kins/ms (1)
code application	carte PCMCIA	100 % booléen	3.70 Kins/ms (1)
		65 % booléen + 35 % numérique	2.50 Kins/ms (1)

Caractéristiques		TSX P 57 2634
Temps	Instruction booléenne de base	0.19/0.21 µs (2)
d'exécution	Instruction numérique de base	0.25/0.42 µs (2)
	Instruction sur flottants	1.75/3.0 µs
Overhead	Tâche maître	1 ms
système	Tâche rapide	0.30 ms

(1) Kins: 1 024 instructions (liste)

(2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 16 Processeur TSX P57 304

Caractéristiques générales des processeurs TSX P57 304

Processeur TSX P57 304

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 304.

Caractéristiques			TSX P57 304
Configuration maximale	Nombre maximum de racks TSX RKY 12EX		8
	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'em	nplacements maximum	111
	Nombre max	imum d'EF de communication simultanées	48
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	128
	de voies	Expert	32
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de	Réseau (ETHWAY, Fipway, Modbus Plus)	3
	connexions	Fipio maître (intégré)	-
		Bus de terrain tiers	3
		Bus de terrain AS-i	8
	Horodateur sauvegardable		oui
	Voies régulation		15
	Boucles de régulation		45
Mémoire	RAM interne	sauvegardable	192 K8
	Carte mémoire PCMCIA (capacité maximale)		1792K8
Structure	Tâche maître		1
application	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	6.67 Kins/ms (1)
du code application		65 % booléen + 35 % numérique	4.76 Kins/ms (1)
	carte PCMCIA	100 % booléen	4.55 Kins/ms (1)
		65 % booléen + 35 % numérique	3.13 Kins/ms (1)

Caractéristiques	TSX P57 304	
Temps d'exécution	Instruction booléenne de base	0.12/0.17 µs (2)
	Instruction numérique de base	0.17/0.33 µs (2)
	Instruction sur flottants	1.75/3.0 µs
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.35 ms

(1) Kins: 1 024 instructions (liste)

⁽²⁾ La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 17 Processeur TSX P57 354

Caractéristiques générales des processeurs TSX P57 354

Processeur TSX P57 354

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 354.

Caractéristiques	TSX P57 354		
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre max	imum de racks TSX RKY 4EX/6EX/8EX	16
	Nombre d'em	nplacements maximum	111
	Nombre max	imum d'EF de communication simultanées	48
Fonctions	Nombre	E/S TOR en rack	1024
	maximum	E/S analogiques en rack	128
	de voies	Application	32
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum	Réseau (ETHWAY, Fipway, Modbus Plus)	3
	de connexions	Fipio maître (intégré) : Nb de périphériques	127
		Bus de terrain tiers	3
		Bus de terrain AS-i	8
	Horodateur s	oui	
	Voies régulation		15
	Boucles de régulation		45
Mémoire	RAM interne	RAM interne sauvegardable	
l	Carte mémoire PCMCIA (capacité maximale)		1792K8
Structure application	Tâche maître	Tâche maître	
	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	6.67 Kins/ms (1)
du code application		65 % booléen + 35 % numérique	4.76 Kins/ms (1)
l	carte	100 % booléen	4.55 Kins/ms (1)
	PCMCIA	65 % booléen + 35 % numérique	3.13 Kins/ms (1)

Caractéristiques	TSX P57 354	
Temps d'exécution	Instruction booléenne de base	0.12/0.17 µs (2)
	Instruction numérique de base	0.17/0.33 µs (2)
	Instruction sur flottants	1.75/3.0 µs
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.35 ms

(1) Kins: 1 024 instructions (liste)

(2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 18 Processeur TSX P57 3634

Caractéristiques générales des processeurs TSX P57 3634

Processeur TSX P57 3634

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 3634.

Caractéristiques			TSX P57 3634
Configuration maximale	Nombre maximum de racks TSX RKY 12EX		8
	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'emp	placements maximum	111
	Nombre maxir simultanées	num d'EF de communication	48
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	128
	voies	Expert	32
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus, Ethernet intégré)	3
		Fipio maître (intégré)	-
		Bus de terrain tiers	3
		Bus de terrain AS-i	8
	Horodateur sauvegardable		oui
	Voies régulation		15
	Boucles de régulation		45
Mémoire	RAM interne s	auvegardable	192 K8
	Carte mémoire	e PCMCIA (capacité maximale)	1792K8
Structure	Tâche maître		1
application	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	6.67 Kins/ms (1)
du code application		65 % booléen + 35 % numérique	4.76 Kins/ms (1)
	carte PCMCIA	100 % booléen	4.55 Kins/ms (1)
		65 % booléen + 35 % numérique	3.13 Kins/ms (1)

Caractéristiques	TSX P57 3634	
Temps d'exécution	Instruction booléenne de base	0.12/0.17 µs (2)
	Instruction numérique de base	0.17/0.33 µs (2)
	Instruction sur flottants	1.75/3.0 µs
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.35 ms

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 19 Processeur TSX P57 454

Caractéristiques générales des processeurs TSX P57 454

Processeur TSX P57 454

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 454.

Caractéristiques			TSX P57 454
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'empla	cements maximum	111
	Nombre maximu	m d'EF de communication simultanées	64
Fonctions	Nombre	E/S TOR en rack	2048
	maximum de voies	E/S analogiques en rack	256
	voies	Expert	64
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	4
	Connexions	Fipio maître (intégré) : Nb de périphériques	127
		Bus de terrain tiers	4
		Bus de terrain AS-i	8
	Horodateur sauvegardable		oui
	Voies régulation		20
	Boucles de régulation		60
Mémoire	RAM interne sauvegardable		440 K8
	Carte mémoire PCMCIA (capacité maximale)		2048 K8
Structure application	Tâche maître		1
	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	15,5 Kins/ms (1)
du code application		65 % booléen + 35 % numérique	11,4 Kins/ms (1)
	carte PCMCIA	100 % booléen	15,5 Kins/ms (1)
		65 % booléen + 35 % numérique	11,4 Kins/ms (1)

Caractéristiques	TSX P57 454	
Temps d'exécution	Instruction booléenne de base	0.039/0.047 µs (2)
	Instruction numérique de base	0.047/0.064 µs (2)
	Instruction sur flottants	0.71/0.87 µs (2)
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.08 ms

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 20 Processeur TSX P57 4634

Caractéristiques générales des processeurs TSX P57 4634

Processeur TSX P57 4634

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 4634.

Caractéristiques			TSX P57 4634
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximu	um de racks TSX RKY 4EX/6EX/8EX	16
	Nombre d'empla	acements maximum	111
	Nombre maximu	um d'EF de communication simultanées	64
Fonctions	Nombre	E/S TOR en rack	2048
	maximum de voies	E/S analogiques en rack	256
	voies	Expert	64
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (Ethernet TCP/IP, Fipway(1), Modbus Plus, Ethernet intégré)	4
		Bus de terrain tiers	4
		Bus de terrain AS-i	8
	Horodateur sauvegardable		oui
	Voies régulation		20
	Boucles de régulation		60
Mémoire	RAM interne sauvegardable		440 K8
	Carte mémoire PCMCIA (capacité maximale)		2048 K8
Structure application	Tâche maître		1
	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution du code application	RAM interne	100 % booléen	15.5 Kins/ms (1)
		65 % booléen + 35 % numérique	11.4 Kins/ms (1)
	carte PCMCIA	100 % booléen	15.5 Kins/ms (1)
l		65 % booléen + 35 % numérique	11.4 Kins/ms (1)

Caractéristiques	TSX P57 4634	
Temps d'exécution	Instruction booléenne de base	0.039/0.047 µs (2)
	Instruction numérique de base	0.047/0.064 µs (2)
	Instruction sur flottants	0.71/0.87 µs (2)
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.08 ms

- (1) Kins: 1 024 instructions (liste)
- (2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 21 Processeur TSX P57 554

Caractéristiques générales des processeurs TSX P57 554

Processeur TSX P57 554

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 554.

Caractéristiques			TSX P57 554
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximum	16	
	Nombre d'emplac	ements maximum	111
	Nombre maximum	n d'EF de communication simultanées	80
Fonctions	Nombre	E/S TOR en rack	2048
	maximum de voies	E/S analogiques en rack	512
	voies	Application	64
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	4
	Connexions	Fipio maître (intégré) : Nb de périphériques	127
		Bus de terrain tiers	5
		Bus de terrain AS-i	8
	Horodateur sauvegardable		oui
	Voies régulation		30
	Boucles de régula	ition	90
Mémoire	RAM interne sauvegardable		1024 K8 (1)
	Carte mémoire PO	CMCIA (capacité maximale)	7168 K8
Structure application	Tâche maître		1
	Tâche rapide		1
	Tâche auxiliaire		4
	Traitements sur événements (1 prioritaire)		128
Vitesse d'exécution	RAM interne	100 % booléen	19.80 Kins/ms (2)
du code application		65 % booléen + 35 % numérique	14.20 Kins/ms (2)
	carte PCMCIA	100 % booléen	19.80 Kins/ms (2)
		65 % booléen + 35 % numérique	14.20 Kins/ms (2)

Caractéristiques	TSX P57 554	
Temps d'exécution	Instruction booléenne de base	0.0375/0.045 μs
	Instruction numérique de base	0.045/0.06 μs
	Instruction sur flottants	0.48/0.56 μs
Overhead système	Tâche maître	1 ms
	Tâche rapide	0,07ms

(1) 1^{er} chiffre lorsque l'application est en RAM interne, 2^{ème} chiffre lorsque l'application est en carte mémoire.

(2) Kins: 1 024 instructions (liste)

35010525 12/2018

Chapitre 22 Processeur TSX P57 5634

Caractéristiques générales des processeurs TSX P57 5634

Processeur TSX P57 5634

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 5634.

Caractéristiques			TSX P57 5634
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'en	nplacements maximum	111
	Nombre max simultanées	imum d'EF de communication	80
Fonctions	Nombre	E/S TOR en rack	2048
	maximum de voies	E/S analogiques en rack	512
	ue voies	Application	64
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (Ethernet TCP/IP, Fipway(1), Modbus Plus, Ethernet intégré)	4
		Bus de terrain tiers	5
		Bus de terrain AS-i	8
	Horodateur sauvegardable		oui
	Voies régulation		30
	Boucles de régulation		90
Mémoire	RAM interne sauvegardable		1024 K8 (2)
	Carte mémoire PCMCIA (capacité maximale)		7168 K8
	Taille mémoire maximum		8192 K8
Structure application	Tâche maître		1
	Tâche rapide		1
	Tâche auxiliaire		4
	Traitements	Traitements sur événements (1 prioritaire)	

Caractéristiques			TSX P57 5634
Vitesse d'exécution	RAM interne	100 % booléen	19.80 Kins/ms (3)
du code application		65 % booléen + 35 % numérique	14.20 Kins/ms (3)
	carte	100 % booléen	19.80 Kins/ms (3)
	PCMCIA	65 % booléen + 35 % numérique	14.20 Kins/ms (3)
Temps d'exécution	Instruction bo	poléenne de base	0.0375/0.045 μs
	Instruction nu	ımérique de base	0.045/0.06 μs
	Instruction su	ır flottants	0.48/0.56 μs
Overhead système	Tâche maître		1 ms
	Tâche rapide		0,07ms

- (1) La carte PCMCIA FIPWAY TSX FPP20 ne peut pas être utilisée dans l'emplacement prévu pour la carte PCMCIA du processeur.
- (2) 1^{er} chiffre lorsque l'application est en RAM interne, 2^{ème} chiffre lorsque l'application est en carte mémoire.

(3) Kins: 1 024 instructions (liste)

Chapitre 23 Processeur TSX P57 6634

Caractéristiques générales des processeurs TSX P57 6634

Processeur TSX P57 6634

Le tableau suivant présente les caractéristiques générales des processeurs TSX P57 6634.

Caractéristiques	Caractéristiques			
Configuration	Nombre maximum de racks TSX RKY 12EX		8	
maximale	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16	
	Nombre d'empl	acements maximum	111	
	Nombre maxim	um d'EF de communication simultanées	96	
Fonctions	Nombre	E/S TOR en rack	2048	
	maximum de voies	E/S analogiques en rack	512	
	Voies	Application	64	
	Nombre	Uni-Telway intégré (prise terminal)	1	
	maximum de connexions	Réseau (Ethernet TCP/IP, Fipway(1), Modbus Plus, Ethernet intégré)	4	
		Bus de terrain tiers	5	
		Bus de terrain AS-i		
	3		oui	
			30	
Boucles de régulation		ulation	90	
Mémoire	RAM interne sa	RAM interne sauvegardable		
	Carte mémoire PCMCIA (capacité maximale)		7168 K8	
Taille mémoir		maximum	6976 K8	
Structure application	Tâche maître		1	
	Tâche rapide		1	
	Tâche auxiliaire		4	
	Traitements sur	événements (1 prioritaire)	128	

Caractéristiques			TSX P57 6634
Vitesse d'exécution	RAM interne	RAM interne 100 % booléen	
du code application		65 % booléen + 35 % numérique	14.20 Kins/ms (3)
	carte PCMCIA	100 % booléen	19.80 Kins/ms (3)
		65 % booléen + 35 % numérique	14.20 Kins/ms (3)
Temps d'exécution	Instruction booléenne de base		0.0375/0.045 μs
	Instruction num	Instruction numérique de base	
	Instruction sur flottants		0.48/0.56 μs
Overhead système	Tâche maître Tâche rapide		1 ms
			0,07ms

- (1) La carte PCMCIA FIPWAY TSX FPP20 ne peut pas être utilisée dans l'emplacement prévu pour la carte PCMCIA du processeur.
- (2) 1^{er} chiffre lorsque l'application est en RAM interne, 2^{ème} chiffre lorsque l'application est en carte mémoire.

(3) Kins: 1 024 instructions (liste)

Chapitre 24 Processeurs TSX H57 24M

Caractéristiques générales des processeurs TSX H57 24M

Processeur TSX H57 24M

Le tableau suivant présente les caractéristiques générales des processeurs TSX H57 24M.

Caractéristiques			TSX H57 24M
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'emp	olacements maximum	111
	Nombre maxir	num d'EF de communication simultanées	32
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	80
	VOICS	Expert (comptage, axe, déplacement, pesage)	0
		actives sur TSX SCP 114 ou TSX SCY •601	24
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (Ethernet TCP-IP)	2
	connexions	Bus de terrain tiers	0
		Bus de terrain AS-i	0
	Horodateur sauvegardable		oui
	Voies régulation		10
	Boucles de régulation		30
Mémoire	RAM interne sauvegardable		192 Ko
	Carte mémoire PCMCIA (capacité maximale)		768 Ko
Structure application	Tâche Mast	Tâche Mast	
	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	15,75 Kins/ms
du code application		65 % booléen + 35 % numérique	11.40 Kins/ms
	carte	100 % booléen	15,75 Kins/ms
	PCMCIA	65 % booléen + 35 % numérique	11.40 Kins/ms

Caractéristiques		TSX H57 24M
Temps d'exécution	nps d'exécution Instruction booléenne de base	
	Instruction numérique de base	0,054/0,073 μs
	Instruction sur flottants	0,55/0,63 µs
Overhead système	Tâche Mast	1 ms
	Tâche rapide	0.08 ms

NOTE : la carte de communication PCMCIA ne peut pas être utilisée dans les emplacements de carte PCMCIA du processeur.

Chapitre 25 Processeurs TSX H57 44M

Caractéristiques générales des processeurs TSX H57 44M

Processeur TSX H57 44M

Le tableau suivant présente les caractéristiques générales des processeurs TSX H57 44M.

Caractéristiques			TSX H57 44M
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maximum de racks TSX RKY 4EX/6EX/8EX		16
	Nombre d'empl	acements maximum	111
	Nombre maxim	um d'EF de communication simultanées	64
Fonctions	Nombre	E/S TOR en rack	2048
	maximum de voies	E/S analogiques en rack	256
	voies	Expert (comptage, axe, déplacement, pesage)	0
		actives sur TSX SCP 114 ou TSX SCY •601	64
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (Ethernet TCP-IP)	4
	Connexions	Bus de terrain tiers	0
		Bus de terrain AS-i	0
	Horodateur sauvegardable		oui
	Voies régulation		20
	Boucles de régulation		60
Mémoire	RAM interne sa	uvegardable	440 Ko
	Carte mémoire	Carte mémoire PCMCIA (capacité maximale)	
Structure application	Tâche Mast		1
	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution	RAM interne	100 % booléen	15,75 Kins/ms
du code application		65 % booléen + 35 % numérique	11.40 Kins/ms
	carte PCMCIA	100 % booléen	15,75 Kins/ms
		65% booléen + 35% numérique	11.40 Kins/ms

Caractéristiques		TSX H57 44M
Temps d'exécution	Instruction booléenne de base	0,039/0,057 μs
	Instruction numérique de base	0,054/0,073 μs
	Instruction sur flottants	0,55/0,63 μs
Overhead système	Tâche maître	1 ms
	Tâche rapide	0.08 ms

NOTE : la carte de communication PCMCIA ne peut pas être utilisée dans les emplacements de carte PCMCIA du processeur.

Chapitre 26

Processeur Premium TSX P57/TSX H57 : caractéristiques générales

Objectif de ce chapitre

Ce chapitre présente les caractéristiques des équipements pouvant être utilisés lors de l'installation d'une station TSX P57/TSX H57.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Caractéristiques des processeurs Premium	176
Caractéristiques électriques des processeurs TSX P57/TSX H57 et des équipements connectables et intégrables	177
Définition et comptage des voies spécifiques	180

Caractéristiques des processeurs Premium

Caractéristiques

Un processeur Premium est composé :

- d'un processeur d'usage général,
- d'un processeur dédié au contrôle commande.

Le tableau suivant présente les caractéristiques principales des différents processeurs :

Processeur	Processeur principal	Fréquence du processeur principal (MHz)	Processeur Automation	Fréquence du processeur Automation (MHz)
TSX P57 CA0244M	INTEL ou AMD 486	48	SONIX	48
TSX P57 CD0244M	INTEL ou AMD 486	48	SONIX	48
TSX PCI57 204M	INTEL ou AMD 486	72	SONIX	48
TSX PCI57 354M	INTEL ou AMD 486	72	SONIX	48
TSX P57 0244M	INTEL ou AMD 486	48	SONIX	48
TSX P57 104M	INTEL ou AMD 486	48	SONIX	48
TSX P57 1634M	INTEL ou AMD 486	48	SONIX	48
TSX P57 154M	INTEL ou AMD 486	48	SONIX	48
TSX P57 204M	INTEL ou AMD 486	72	SONIX	48
TSX P57 2634M	INTEL ou AMD 486	72	SONIX	48
TSX P57 254M	INTEL ou AMD 486	72	SONIX	48
TSX P57 304M	INTEL ou AMD 486	72	SONIX	48
TSX P57 3634M	INTEL ou AMD 486	72	SONIX	48
TSX P57 354M	INTEL ou AMD 486	72	SONIX	48
TSX P57 4634M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 454M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 5634M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 554M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX P57 6634M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX H57 24M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66
TSX H57 44M	INTEL PENTIUM 166/266 MMX	166	PHOENIX	66

Caractéristiques électriques des processeurs TSX P57/TSX H57 et des équipements connectables et intégrables

Généralités

Les processeurs peuvent recevoir certains équipements non auto-alimentés, il sera donc nécessaire de tenir compte de la consommation de ces équipements lors de l'établissement du bilan global de consommation.

- Equipements non auto-alimentés connectables sur la prise terminal :
 - o terminal de réglage : T FTX 117 ADJUST,
 - o boîtier TSX P ACC01 pour raccordement au bus Uni-Telway.
- Equipements non auto-alimentés intégrables dans le processeur :
 - o cartes mémoire PCMCIA
 - o cartes de communication PCMCIA TSX FPP 10/20
 - o carte de communication PCMCIA TSX SCP 111/112/114
 - o carte de communication PCMCIA TSX MBP 100

Consommation (processeurs + cartes mémoire PCMCIA)

Ce tableau vous présente la consommation sur 5 V cc du module d'alimentation TSX PSY/TSX H57 :

Processeur + Carte mémoire PCMCIA	Consommation typique	Consommation maximale
TSX P57 0244	750 mA	1 050 mA
TSX P57 104	750 mA	1 050 mA
TSX P57 154	830 mA	1 160 mA
TSX P57 1634	1 550 mA	2 170 mA
TSX P57 204	750 mA	1 050 mA
TSX P57 254	830 mA	1 160 mA
TSX P572634	1 550 mA	2 170 mA
TSX P57304	1 000 mA	1 400 mA
TSX P57 354	1 080 mA	1 510 mA
TSX P57 3634	1 800 mA	2 520 mA
TSX P57 454	1 580 mA	2 210 mA
TSX P574634	1 780 mA	2 490 mA
TSX P57 554,	1 580 mA	2 210 mA
TSX P57 5634	1 780 mA	2 490 mA
TSX P57 6634	1 780 mA	2 490 mA
TSX H57 24M	1 780 mA	2 492 mA
TSX H57 44M	1 780 mA	2 492 mA

Puissance dissipée (processeurs + cartes mémoire PCMCIA)

Ce tableau fait état de la puissance dissipée des processeurs TSX P57/TSX H57 :

Processeur + Carte mémoire PCMCIA	typique	maximum
TSX P57 0244	3,7 W	5,2 W
TSX P57 104	3,7 W	5,2 W
TSX P57 154	4,1 W	5,8 W
TSX P57 1634	7,7 W	10,8 W
TSX P57 204	3,7 W	5,2 W
TSX P57 254	4,1 W	5,8 W
TSX P57 2634	7,7 W	10,8 W
TSX P57304	5,0 W	7,0 W
TSX P57 354	5,4 W	7,5 W
TSX P57 3634	9 W	12,6 W
TSX P57 454	7,9 W	11 W
TSX P57 4634	8,9 W	12,5 W
TSX P57 554	7,9 W	11 W
TSX P57 5634	8,9 W	12,5 W
TSX P57 6634	8,9 W	12,5 W
TSX H57 24M	9,1 W	12,7 W
TSX H57 44M	9,1 W	12,7 W

Consommation des équipements connectables et intégrables dans les processeurs

Consommation:

Consommation sur 5VDC du module d'alii	Typique	Maximale	
Equipements non auto-alimentés	TFTX 117 ADJUST	310 mA	340 mA
connectables sur prise terminal (TER)	TSXPACC01	150 mA	250 mA
Carte de communication PCMCIA	TSXFPP10	330 mA	360 mA
intégrables dans le processeur	TSXFPP20 (1)	330 mA	360 mA
	TSXSCP111	140 mA	300 mA
	TSXSCP112	120 mA	300 mA
	TSXSCP114	150 mA	300 mA
	TSXMBP100	220 mA	310 mA

(1) non intégrable dans les processeurs TSX P57 5634/6634

Puissance dissipée des équipements connectables et intégrables dans les processeurs

Puissance dissipée :

Puissance dissipée	Typique	Maximale	
Equipements non auto-alimentés	TFTX 117 ADJUST	1,5 W	1,7 W
connectables sur prise terminal (TER)	TSXPACC01	0,5 W	1,25 W
Carte de communication PCMCIA	TSXFPP10	1,65 W	1,8 W
intégrables dans le processeur	TSXFPP20 (1)	1,65 W	1,8 W
	TSXSCP111	0,7 W	1,5 W
	TSXSCP112	0,6 W	1,5 W
	TSXSCP114	0,75 W	1,5 W
	TSXMBP100	1,1 W	1,55 W

⁽¹⁾ non intégrable dans le processeur TSX P57 5634

Définition et comptage des voies spécifiques

Tableau récapitulatif

Applications:

Application		Module/carte	Voies spécifiques	Numéro
Comptage		TSXCTY2A	Oui	2
		TSXCTY2C	Oui	2
		TSXCTY4A	Oui	4
Commande de mouvement		TSXCAY21	Oui	2
		TSXCAY41	Oui	4
		TSXCAY22	Oui	2
		TSXCAY42	Oui	4
		TSXCAY33	Oui	3
Commande pas à pas		TSXCFY11	Oui	1
		TSXCFY21	Oui	2
Pesage		TSXISPY101	Oui	1
Liaison série de communication		TSXSCP11. dans le processeur	Non	0(*)
		TSXJNP11. dans le TSXSCY21.	Oui	1
		TSXJNP11. dans le TSXSCY21.	Oui	1
		TSXSCY 21 (voie intégrée)	Oui	1
	Agent Fipio	TSXFPP10 dans le processeur	Non	0(*)
	Fipio maître	Intégrée au processeur	Non	0(*)
	Ethernet	Intégrée au processeur	Non	0(*)

^(*) Bien que spécifiques, ces voies ne sont pas à prendre en compte dans le calcul du nombre maximum de voies spécifiques prises en charge par le processeur.

NOTE : seules les voies configurées à partir du logiciel de programmation sont comptabilisées.

35010525 12/2018

Chapitre 27

Performances des processeurs

Objectif de ce chapitre

Ce chapitre décrit les performances des processeurs.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Temps de cycle de tâche MAST : introduction	182
Temps de cycle de tâche MAST : traitement du programme Ttp	183
Temps de cycle de tâche MAST : traitement interne des entrées et sorties	184
Exemple de calcul des temps de cycle d'une tâche MAST dans les conditions ci-après	187
Temps de cycle de tâche FAST	189
Temps de réponse sur événement	190

Temps de cycle de tâche MAST : introduction

Schéma explicatif

Le schéma suivant décrit le temps de cycle de tâche MAST :

TI = traitement interne

TEMPS DE CYCLE MAST = Temps de traitement du programme (Ttp) + Temps de traitement interne en entrées et sorties (Tti) :

Temps de cycle de tâche MAST : traitement du programme Ttp

Définition du temps de traitement du programme Ttp

Ttp = Temps d'exécution du code application (Texca).

Temps d'exécution du code application (Texca)

Texca = somme des temps de chaque instruction exécutée par le programme application à chaque cycle.

Les temps d'exécution de chaque instruction ainsi que l'application type ayant servi à les vérifier sont données dans le manuel de référence.

Le tableau ci-contre donne le temps d'exécution en millisecondes (ms), pour 1K instruction (1 024 instructions) :

Processeurs	Temps d'exécution du code application Texca (1)			
	RAM interne		Carte PCMCIA	
	100 % booléen	65 % booléen + 35 % numérique	100 % booléens	65 % booléen + 35 % numérique
TSX P57 0244 TSX P57 104/1634 TSX P57 154	0,21 ms	0,28 ms	0,32 ms	0.49 ms
TSX P57 204/254/2634 TSX PCI 57 204	0,21 ms	0,28 ms	0,27 ms	0,40 ms
TSX P57 304/354/3634 TSX PCI 57 354	0,15 ms	0,21 ms	0,22 ms	0,32 ms
TSX P57 454/4634 TSX H57 24M/44M	0,06 ms	0,09 ms	0,06 ms	0,09 ms
TSX P57 554/5634/6634	0,05 ms	0,07 ms	0,05 ms	0,07 ms

(1) avec toutes les instructions exécutées à chaque cycle automate.

Temps de cycle de tâche MAST : traitement interne des entrées et sorties

Définition du temps de traitement interne en entrées et sorties (Tti)

Tti = Temps d'overhead système de la tâche MAST (TosM)

- + max [Temps du système de communication en réception (Tcomr); temps de gestion en entrée des E/S implicites %I (Tge%I)]
- + [Temps du système de communication en émission (Tcome); temps de gestion en sortie des E/S implicites %Q (Tge%Q)].

Temps d'overhead système tâche MAST (TosM)

Tableau récapitulatif :

Processeurs	Temps sans application Fipio	Temps avec application Fipio
TSX 57 0244	1 ms	-
TSX 57 104	1 ms	-
TSX 57 1634	1 ms	-
TSX 57 154	1 ms	(1)
TSX P57 204 TSX PCI 57 204	1 ms	-
TSX P57 254	1 ms	(1)
TSX P57 2634	1 ms	-
TSX P57 304	1 ms	-
TSX P57 354 TSX PCI 57 354 TSX P57 3634	1 ms	(1) (1) -
TSX P57 454 TSX P57 4634 TSX H57 24M/44M	1 ms	(1) - -
TSX P57 554	1 ms	(1)
TSX P57 5634/6634	1 ms	-

⁽¹⁾ Informations disponibles dans Control Expert.

NOTE: Des informations sont également disponibles dans une version d'Unity Pro ultérieure à V2.0 (Unity Pro est l'ancien nom des versions d'Control Expert antérieures à ≤ V13.1).

Temps de gestion en entrée et sorties des E/S implicites %I et %Q

Tge%I = 60 microsecondes + somme des temps IN de chaque module.

Tgs%Q = 60 microsecondes + somme des temps OUT de chaque module.

Temps de gestion en entrée (IN) et en sortie (OUT) pour chaque module :

Type de module	Temps de gestion		
	En entrée (IN)	En sortie (OUT)	Total (IN+OUT)
Entrées TOR 8 voies	27 μs	-	27 μs
Entrées TOR 16 voies (tous modules sauf TSX DEY 16FK)	27 μs	-	27 μs
Entrées TOR 32 voies	48 µs	-	48 µs
Entrées TOR 64 voies	96 µs	-	96 µs
Entrées TOR rapides (8 voies utilisées) (module TSX DEY 16FK/TSXDMY 28FK)	29 μs	16 µs	45 μs
Entrées TOR rapides (16 voies utilisées) (module TSX DEY 16FK/TSXDMY 28FK/28RFK)	37 μs	22 µs	59 µs
Sorties TOR 8 voies	26 µs	15 µs	41 µs
Sorties TOR 16 voies	33 µs	20 µs	53 µs
Sorties TOR 32 voies	47 μs	30 µs	77 µs
Sorties TOR 64 voies	94 µs	60 μs	154 µs
Entrées analogiques (par groupe de 4 voies)	84 µs	-	84 µs
Sorties analogiques (4 voies)	59 µs	59 μs	118 µs
Comptage (TSX CTY 2A/4A), par voie	55 µs	20 μs	75 µs
Comptage (TSX CTY 2C), par voie	65 µs	21 µs	86 µs
Commande pas à pas (TSX CFY), par voie	75 µs	20 μs	95 μs
Commande d'axes (TSX CAY), par voie	85 µs	22 µs	107 µs

NOTE : les temps des modules d'entrées/sorties TOR sont donnés dans l'hypothèse où toutes les voies du module sont affectées à la même tâche.

Exemple: utilisation d'un module TSX DEY 32 D2 K

- Si les 32 voies sont affectées à la même tâche, utilisez le temps "Entrées TOR 32 voies",
- Si seulement 16 voies sont affectées à la même tâche, utilisez le temps "Entrées TOR 16 voies" et non pas le temps "Entrée TOR 32 voies" divisé par 2.

Temps du système de communication

La communication (hors télégramme) est gérée lors des phases "Traitement Interne" de la tâche MAST :

- en entrée pour les réceptions de message (Tcomr),
- en sorties pour les émissions de messages (Tcome).

Le temps de cycle de la tâche MAST est donc impacté par le trafic de communication. Le temps de communication passé par cycle varie considérablement en fonction :

- Trafic généré par le processeur : nombre d'EF de communication actifs simultanément,
- du trafic généré par d'autres équipements à destination du processeur ou pour lesquels le processeur assure la fonction de routeur en tant que maître.

Ce temps n'est passé que dans les cycles où il y a un nouveau message à gérer.

Temps émission/réception:

Processeurs	Temps d'émission/réception (1)
TSX P57 0244/104/1634/154	2 ms
TSX P57 204/254/2634 TSX PCI 57 204	1,5 ms
TSX P57 304/354/3634 TSX PCI 57 354 TSX P57 454/4634 TSX H57 24M/44M	1,5 ms 1,5 ms 0,6 ms 0,6 ms
TSX 57 554/5634/6634	0,4 ms

(1) incluant le traitement par les pilotes de protocole.

NOTE: Tous ces temps ne peuvent pas se cumuler dans le même cycle. L'émission a lieu dans le même cycle que l'exécution de l'instruction tant que le trafic de communication reste faible, mais pas la réception de la réponse.

Exemple avec terminal (avec logiciel de programmation) connecté et table d'animation ouverte

Processeurs	Temps moyen par cycle	Temps maximum par cycle
TSX P57 0244/104/1634/154	2 ms	3 ms
TSX P57 204/254/2634 TSX PCI 57 204	2 ms	3 ms
TSX P57 304/354/3634 TSX PCI 57 354 TSX P57 454/4634 TSX H57 24M/44M	2 ms 2 ms 1 ms	3 ms 3 ms 1,5 ms
TSX P57 554/5634/6634	0,6 ms	1 ms

Exemple de calcul des temps de cycle d'une tâche MAST dans les conditions ci-après

Contexte

Soit une application dont les caractéristiques sont les suivantes :

- processeur TSX P57 204
- exécution d'un programme en RAM interne de l'automate
- 10 K instructions : 65 % booléen + 35 % numérique
- un EF de communication de type SEND_REQ (pour un TSX P57 204 le temps d'exécution est 0,75ms)
- 128 entrées TOR réparties sur 7 modules TSX DEY 16D2 + 1 module TSX DEY 16FK
- 80 sorties TOR, réparties sur 5 modules TSX DSY 16T2
- 32 entrées analogiques réparties sur 2 modules TSX AEY 1600
- 16 sorties analogiques réparties sur 4 modules TSX ASY 410
- 2 voies de comptage réparties sur 1 module TSX CTY 2A

Calcul des différents temps

Temps d'exécution du code application (TEXCA) :

- sans EF de communication : 10 x 0,28 = 2,8 ms
- avec un EF de communication de type SEND REQ = (10x0,28) + 0,75 = 3,55 ms

Temps d'overhead système (TosM) = 1 ms

Temps de gestion en entrée et sortie des E/S implicites %I et %Q:

Référence modules	Type de modules	Nombre de modules	Temps de gestion en entrée (IN)	Temps de gestion en sortie (OUT)
TSX DEY 16D2	Entrées TOR 16 voies	7	189 micro secondes	-
TSX DEY 16 FK	Entrées TOR 16 voies (entrées rapides)	1	37 micro secondes	22 micro secondes
TSX DSY 16T2	Sorties TOR 16 voies	5	165 micro secondes	100 micro secondes
TSX AEY 1600	Entrées analogiques	2 (32 voies)	672 micro secondes	-
TSX ASY 410	Sorties analogiques	4 (16 voies)	236 micro secondes	236 micro secondes
TSX CTY 2A	Comptage	1 (2 voies)	110 micro secondes	40 micro secondes
Temps de gestion total			1 409 micro secondes	398 micro secondes

Temps de gestion en entrées: Tge%I = 60 micro secondes + 1 409 micro secondes = 1 469 micro secondes = 1,47 ms

Temps de gestion en sortie : Tgs%Q = 60 micro secondes + 398 micro secondes = 458 micro secondes = 0.46 ms

Temps du système de communication :

- Emission de la requête : Tcome = 1,5 ms
- Réception de la réponse : Tcomr = 1,5 ms

Temps de cycle sans exécution de l'OF de communication

```
TcyM = Texca + TosM + Tge%I + Tgs%Q
= 2,8 ms + 1 ms + 1,47 ms + 0,46 ms = 5,73 ms
```

Temps de cycle avec exécution de l'OF de communication et émission de la requête

```
TcyM = Texca + TosM +Tge%I + max [temps émission requête (Tcome), Tgs%Q] = 3.55 \text{ ms} + 1 \text{ ms} + 1.47 \text{ ms} + \text{max} [1.5 \text{ ms}; 0.46 \text{ ms}] = 7.52 \text{ ms}
```

Temps de cycle avec réception de la réponse

```
TcyM = Texca + TosM + max [temps réception réponse (Tcomr), Tge%I] + Tgs%Q = 2.8 \text{ ms} + 1 \text{ ms} + \text{max} [1.5 \text{ ms}; 1.47 \text{ ms}] + 0.46 \text{ ms} = 5.76 \text{ ms}
```

Temps de cycle de tâche FAST

Définition

Temps de cycle FAST = Temps de traitement du programme (Ttp) + Temps de traitement interne en entrées et sorties (Tti).

Définition du temps de traitement du programme Ttp

Ttp = Temps d'exécution du code application relatif à la FAST (Texca).

Temps d'exécution du code application : voir *Définition du temps de traitement du programme Ttp, page 183.*

Définition du temps de traitement interne en entrées et sorties (Tti)

Tti = Temps d'overhead système tâche FAST (TosF) + Temps de gestion en entrées et sorties des E/S implicites %I et %Q.

Temps d'overhead système tâche FAST (TosF)

Processeurs	Temps overhead système tâche FAST
TSX P57 0244/104/1634/154	0,30 ms
TSX P57 204/254/2634	0,30 ms
TSX PCI 57 204	0,30 ms
TSX P57 304/354/3634	0,35 ms
TSX PCI 57 354	0,35 ms
TSX P57 454/4634	0,08 ms
TSX H57 24M/44M	0,07 ms
TSX P57 554/ 5634/6634	0,07 ms

Temps de gestion en entrée et sortie des E/S implicites %I et %Q : voir *Temps de gestion en entrée et sorties des E/S implicites %I et %Q, page 185.*

Temps de réponse sur événement

Généralités

Définition : temps entre un front sur une entrée événementielle et le front correspondant sur une sortie positionnée par le programme de la tâche événementielle.

Exemple: Programme avec 100 instructions booléennes et module d'entrée TSX DSY 32TK2

Processeurs	Durée	Typique	Maximum
TSX P57 0244/104/1634/154	1,9 ms	2,8 ms	5,0 ms
TSX P57 204/254/2634 TSX PCI 57 204	1,9 ms	2,4 ms	4,2 ms
TSX P57 304/354/3634 TSX PCI 57 354	1,8 ms	2,2 ms	3,7 ms
TSX P57 454/4634 TSX H57 24M/44M	1,6 ms	2,0 ms	3,7ms
TSX P57 554/5634/6634	1,4 ms	1.6 ms	3,7 ms

Partie III

Processeurs Atrium

Objet de cette partie

Cette partie a pour objectif de décrire les processeurs Atrium et leur mise en œuvre.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	Page
28	Processeurs Atrium : présentation	193
29	Processeurs Atrium : installation	205
30	Processeurs Atrium : Diagnostic	231
31	Processeur TSX PCI 57 204	241
32	Processeur TSX PCI 57 354	243
33	Processeurs Atrium : caractéristiques générales	245

Chapitre 28

Processeurs Atrium : présentation

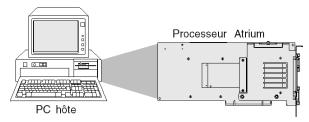
Objectif de ce chapitre

Ce chapitre a pour objectif de vous présenter les processeurs Atrium.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale	194
Description physique des processeurs Atrium	195
Horodateur	197
Dimensions des cartes processeurs Atrium	198
Eléments standard constitutifs d'une carte Atrium	200
Eléments constitutifs optionnels d'une carte Atrium	201
Catalogue des processeurs Atrium	204


Présentation générale

Présentation

Intégrés dans un PC hôte fonctionnant sous Windows 2000 ou Windows XP et qui dispose d'un bus PCI 32 bits, les processeurs Atrium gèrent à partir des logiciels de programmation l'ensemble d'une station automate constituée de racks, de modules d'entrées/sorties TOR, de modules d'entrées/sorties analogiques et de modules métiers qui peuvent être répartis sur un ou plusieurs racks connectés sur le bus X.

NOTE: Le processeur Atrium communique avec le PC dans lequel il est installé par le bus PCI. Pour cela, le pilote de communication **PCIWAY 2000 or XP** doit être installé.

Illustration

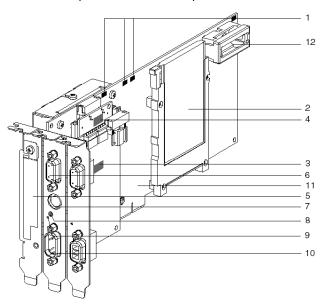
Deux types de processeurs sont proposés pour répondre à vos différents besoins :

- Processeur TSX PCI 204: processeurs de capacité et de performance identique au processeur TSX P57 204.
- Processeur TSX PCI 354 : processeur de capacité et performance identique au processeur TSX 57 354.

Caractéristiques du PC hôte

Pour recevoir un processeur Atrium, le PC hôte doit :

- fonctionner sous Windows 2000 ou Windows XP.
- disposer d'un bus PCI 32 bits 3 MHz (1).
- avoir deux ou trois (2) emplacements disponibles sur le bus PCI (consécutifs et au pas de 20.32mm + 7mm) avec des espaces suffisants en hauteur et longueur.
 la découpe de la carte processeur TSX PCI 57 respectant entièrement la découpe d'une carte PC PCI 32 bits.
- répondre aux normes PCI (signaux, alimentation,...).


NOTE: Le terme de « PC hôte » recouvre un matériel de type PC industriel du groupe Schneider ou tout autre PC disponible dans le commerce ayant les caractéristiques définies ci-dessus.

- (1) La fréquence de fonctionnement du bus PCI doit impérativement être supérieure à 25 MHz.
- (2) 3 emplacements dans le cas où l'alimentation optionnelle 24 V est rajoutée.

Description physique des processeurs Atrium

Illustration

Différents composants d'un module processeur TSX PCI 57

Illustration

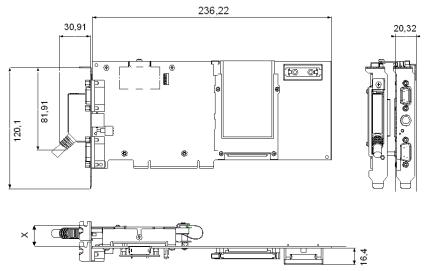
Ce tableau décrit les éléments d'un module processeur :

Repère	Fonction
1	Voyants de signalisation RUN, TER, BAT, I/O, et FIP (ce dernier voyant n'est présent que sur le modèle TSX PCI 57 354).
2	Emplacement pour une carte d'extension mémoire au format PCMCIA type 1.
3	Micro-interrupteurs pour le codage de l'adresse rack sur le bus X.
4	Micro-interrupteurs pour le codage de la position module sur le rack.
5	Emplacement pour une carte de communication PCMCIA type 3.
6	Connecteur SUB-D 9 points femelles permettant le déport du bus X vers un rack extensible.
7	Prise terminal (Connecteur TER (mini-DIN 8 points)): permet de raccorder un terminal de type FTX ou compatible PC, ou de connecter l'automate au bus Uni-Telway au travers du boîtier d'isolement TSX P ACC 01. Ce connecteur permet d'alimenter en 5 V le périphérique qui lui est raccordé (dans la limite du courant disponible fourni par l'alimentation du PC).
8	Bouton RESET à pointe de crayon provoquant un démarrage à froid de l'automate lorsqu'il est actionné • Processeur en fonctionnement normal : démarrage à froid en STOP ou en RUN, selon la procédure définie lors de la configuration • Processeur en défaut : démarrage forcé en STOP
	L'action sur le bouton RESET doit être faite à l'aide d'un objet isolant.
9	Voyant de signalisation ERR.
10	Connecteur SUB-D 9 points mâles permettant le raccordement au bus Fipio maître. Ce connecteur n'est présent que sur le processeur TSX PCI 57 354.
11	Connecteur PCI 32 bits permettant la connexion avec le PC hôte.
12	Emplacement recevant une pile qui assure la sauvegarde de la mémoire RAM interne du processeur.

NOTE: La prise terminal **TER** propose, par défaut, le mode de communication Uni-Telway maître et, par configuration, le mode Uni-Telway esclave ou le mode caractères ASCII.

Horodateur

Présentation

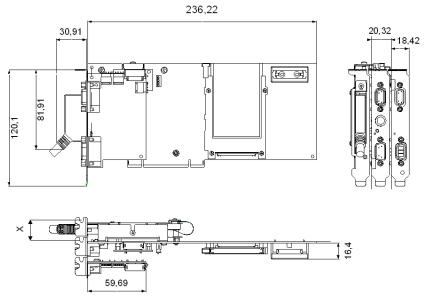

Les processeurs Atrium disposent d'un horodateur.

Voir *Horodateur, page 85* de la section **Processeur Premium TSX P57/TSX H57**.

Dimensions des cartes processeurs Atrium

Processeur Atrium TSX PCI 57

Les schémas suivants présentent les cotes, données en millimètres, des cartes processeurs Atrium.



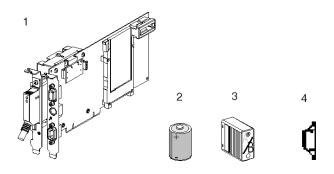
X = pas variable de 20,32 à 27,32 mm

NOTE: un processeur TSX PCI 57 utilise deux emplacements sur le bus PCI du PC. Ces emplacements doivent être adjacents et séparés de 20,32 mm à 27,32 mm.

Processeur Atrium avec alimentation 24 V optionnelle

Les schémas suivants présentent les cotes, données en millimètres, des cartes processeurs Atrium.

X = pas variable de 20,32 à 27,32 mm


NOTE: un processeur TSX PCI 57 équipé de la carte alimentation 24 V optionnelle utilise trois emplacements sur le bus PCI du PC. Ces emplacements doivent être adjacents et séparés de 20,32 mm à 27,32 mm.

NOTE : si le processeur est alimenté par une carte d'alimentation optionnelle, il n'est pas mis hors tension lorsque le PC est mis hors tension, mais lorsque la carte est mise hors tension.

Eléments standard constitutifs d'une carte Atrium

Illustration

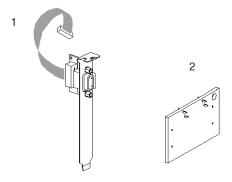
Ce schéma présente les différents éléments standard constitutifs d'une carte processeur Atrium.

Tableau des éléments et des descriptions

Le tableau suivant indique les noms et les descriptions des différents éléments constitutifs d'une carte processeur TSX PCI 57 :

Repère	Elément	Descriptif
1	Carte processeur Atrium	Elle comprend un sous-ensemble mécanique permettant l'accueil d'une carte PCMCIA de communication type 3.
2	Pile	Elle assure la sauvegarde de la mémoire RAM du processeur. Elle est à monter dans l'emplacement prévu à cet effet sur la carte processeur.
3	Terminaison de ligne	Terminaison de ligne de type TSX TLYEX /B (voir page 396).
4	Capot amovible	Capot amovible pour carte de communication PCMCIA type 3, spécifique au processeur Atrium. La fixation mécanique d'une carte de communication sur le processeur Atrium nécessite l'utilisation de ce capot (voir montage et instruction de service livrée avec chaque carte de communication).

Eléments constitutifs optionnels d'une carte Atrium


Eléments optionnels

Les deux éléments suivants sont optionnels :

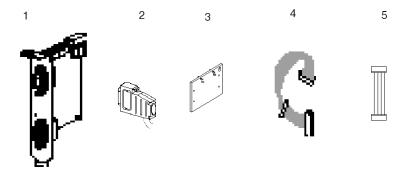
- un plastron TSX PCI ACC1. Cet accessoire est à utiliser pour l'intégration d'un processeur Atrium à l'intérieur d'un segment de bus X.
- une alimentation 24 V, TSX PSI 2010. Cette carte se connecte sur la carte processeur Atrium, elle assure l'alimentation du processeur lorsque le PC est mis hors tension. Elle permet aussi l'intégration du processeur Atrium dans un segment de bus X.

Plastron TSX PCI ACC1

Ce schéma présente les différents éléments constitutifs du TSX PCI ACC1 :

Tableau des éléments et descriptions

Le tableau suivant indique les noms et les descriptions des différents éléments constitutifs du TSX PCI ACC1 :


Repère	Elément	Description	
1	Plastron	Plastron équipé d'un connecteur SUB-D 9 broches pour raccordement d'un câble de déport de bus X TSX CBYOK (voir page 392) et d'un câble pour raccordement au processeur. Cet accessoire est à utiliser pour l'intégration du processeur à l'intérieur d'un segment de bus X.	
2	Carte fille	Deux types de cartes filles : I'une assure l'interface entre le plastron ci-dessus et la carte processeur ; cet accessoire est à utiliser avec le plastron ci-dessus. Elle se monte en lieu et place de la terminaison de ligne A/ intégrée à la base au processeur. I'autre permet la connexion à un module IBY	

NOTE: En outre, les éléments cités ci-dessous sont livrés avec la carte Atrium:

- disques contenant les pilotes PCIWAY et le produit logiciel OFS
- instruction de service concernant la mise en œuvre du processeur Atrium

Alimentation 24V TSX PSI 2010

Ce schéma présente les différents éléments constitutifs du TSX PSI 2010 :

Tableau des éléments et descriptions

Le tableau suivant indique les noms et les descriptions des différents éléments constitutifs du TSX PSI 2010 :

Repère	Elément	Description
1	Carte alimentation 24V	Une carte alimentation équipée : d'un connecteur SUB-D 9 broches pour raccordement d'un câble d'extension bus X TSX CBY ••0K et d'un connecteur mâle pour l'alimentation 24 V externe.
2	Connecteur femelle	Un connecteur femelle pour raccordement à l'alimentation 24 V externe.
3	Terminaison de ligne	Une carte fille qui assure l'interface entre la carte alimentation et la carte processeur Atrium. Elle se monte en lieu et place de la terminaison de ligne A/ intégrée à la base au processeur.
4	Câble bus X	Un câble bus X pour le raccordement de la carte fille au connecteur bus X de la carte alimentation.
5	Câble d'alimentation	Un câble d'alimentation pour le raccordement de la carte alimentation à l'alimentation de la carte processeur Atrium.

Catalogue des processeurs Atrium

Catalogue

Le tableau suivant décrit les principales caractéristiques (maximales) des processeurs TSX PCI 57 204 et TSX PCI 57 354.

Référence		TSX PCI 57 204	TSX PCI 57 354
Nb de racks	TSX RKY 12 EX	8	8
	TSX RKY 4EX/6EX/8EX	16	16
Nb d'emplacements	Avec TSX RKY 12 EX	87	87
modules	Avec TSX RKY 4EX/6EX/8EX	111	111
Nb de voies	E/S TOR	1024	1024
	E/S analogique	80	128
	Métier (comptage, axe)	24	32
Nb de connexions	Réseau (Fipway, ETHWAY/TCP_IP, Modbus Plus)	1	3
	Fipio maître nb équipements	-	127
	Bus de terrain (InterBus-S, Profibus)	1	3
	Capteur/actionneur ASi	4	8
Taille mémoire	Interne	160 K8	224 K8
	Extension	768 K8	1 792 K8

Chapitre 29

Processeurs Atrium: installation

Objectif de ce chapitre

Ce chapitre traite de l'installation des processeurs Atrium et de la carte d'extension PCMCIA.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page	
Précautions à prendre lors de l'installation	206	
Installation du processeur Atrium dans le PC	207	
Installation logique du processeur Atrium sur le bus X	208	
Opérations préliminaires avant l'installation		
Comment configurer l'adresse du processeur Atrium sur le bus X	212	
Comment configurer l'adresse d'E/S de base du processeur sur le bus PCI	213	
Comment installer la carte processeur Atrium dans le PC		
Installation de la carte d'alimentation 24 V		
Intégration du processeur Atrium à l'intérieur d'un segment de bus X	219	
Comment monter/démonter la carte d'extension mémoire sur le processeur Atrium		
Cartes mémoires pour processeurs Atrium		
Montage/démontage des cartes de communication sur le processeur Atrium		
Traitement sur insertion/extraction d'une carte mémoire PCMCIA sur un automate Atrium		
Précautions à prendre lors du remplacement d'un processeur Atrium		

Précautions à prendre lors de l'installation

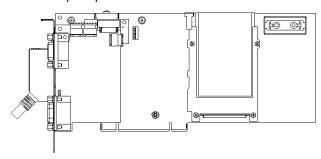
Généralités

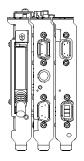
Il est conseillé de limiter les charges d'électricité statique qui peuvent sérieusement endommager les circuits électroniques. Pour ce faire, observez les règles suivantes :

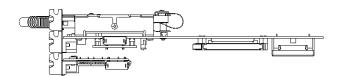
A ATTENTION

DECHARGE ELECTROSTATIQUE

- Tenez la carte par les bords. Ne touchez pas les connecteurs ni les circuits visibles.
- N'extrayez la carte de son conditionnement anti-statique de protection que lorsque vous êtes prêt à l'installer dans le PC.
- Si possible, reliez-vous à la terre lors de la manipulation.
- Ne posez pas la carte sur une surface métallique.
- Évitez tout mouvement superflu car l'électricité statique est générée par les vêtements, les tapis et les meubles.


Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.


Installation du processeur Atrium dans le PC


Processeur Atrium TSX PCI 57

Le processeur TSX PCI 57 occupe mécaniquement deux ou trois emplacements consécutifs 1, 2 et 3 (avec alimentation optionnelle 24 V) sur le bus PCI mais n'en utilise électriquement qu'un seul, le 1. Les emplacements 2 et 3 sont utilisés par la partie mécanique de la carte PCMCIA de communication et par l'alimentation 24 V.

Schéma de principe :

Installation logique du processeur Atrium sur le bus X

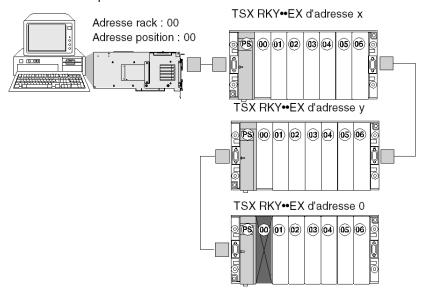
Mise en œuvre logique sur le bus X

Le processeur Atrium occupe logiquement le même emplacement qu'un processeur TSX P57/TSX H57 (rack d'adresse 0, position 00 ou 01).

Le rack TSX RKY EX d'adresse 0 reçoit obligatoirement un module d'alimentation et la position normalement occupée par un processeur de type TSX P57 sera inoccupée (emplacement virtuel du processeur Atrium).

Les automates Premium disposant de deux types d'alimentation (format standard ou double format), la position inoccupée sur le rack d'adresse 0 sera fonction du type d'alimentation utilisé.

NOTE:

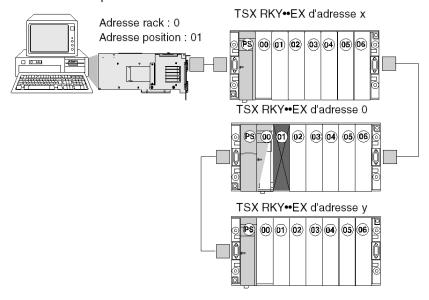

- L'emplacement correspondant à l'adresse du processeur Atrium (physiquement libre sur le rack) ne doit pas être utilisé par un autre module.
- Pour que le processeur Atrium prenne connaissance de son adresse sur le bus X, il est nécessaire de configurer l'adresse bus X à l'aide de micro-interrupteurs présents sur la carte processeur.

Utilisation d'un module d'alimentation au format standard

Dans ce cas, la règle d'installation pour le rack d'adresse 0 est la suivante :

- le module d'alimentation occupe systématiquement la position PS.
- la position 00 emplacement virtuel du processeur doit être inoccupée.
- les autres modules sont mis en œuvre à partir de la position 01.

Le schéma suivant illustre la règle d'installation des modules dans le cas d'utilisation d'un module d'alimentation simple format.



Utilisation d'un module d'alimentation double format

Dans ce cas, la règle de mise en œuvre pour le rack d'adresse 0 est la suivante :

- le module d'alimentation occupe systématiquement la position PS et 00.
- la position 01 emplacement virtuel du processeur doit être inoccupée.
- les autres modules sont mis en œuvre à partir de la position 02.

Le schéma suivant illustre la règle d'installation des modules en cas d'utilisation d'un module d'alimentation simple format.

Opérations préliminaires avant l'installation

Généralités

Avant installation de la carte processeur dans le PC, il est nécessaire d'effectuer certaines opérations :

- Insérez si nécessaire la pile dans l'emplacement prévu à cet effet (voir page 234).
- Insérez si nécessaire la carte mémoire PCMCIA (voir page 222).
- Configurez l'adresse du processeur sur le bus X (voir page 212).
- Configurez l'adresse E/S standard du processeur sur le bus PCI (voir page 213).

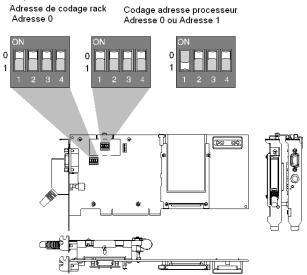
Comment configurer l'adresse du processeur Atrium sur le bus X

Généralités

Cette adresse devra être la même que celle qui sera configurée dans l'écran de configuration des logiciels de programmation. Cette configuration se fait à l'aide de micro-interrupteurs situés sur la carte processeur.

Adresse rack: l'emplacement virtuel du processeur est toujours situé sur le rack d'adresse 0.

Position processeur : la position virtuelle du processeur sera fonction du type d'alimentation installé sur le rack :


- alimentation simple format : position virtuelle du processeur = 00
- alimentation double format : position virtuelle du processeur = 01

Configuration par défaut :

- adresse rack = 0
- position module = 00

Illustration

Schéma explicatif:

Comment configurer l'adresse d'E/S de base du processeur sur le bus PCI

Processeur TSX PCI 57 sur bus PCI

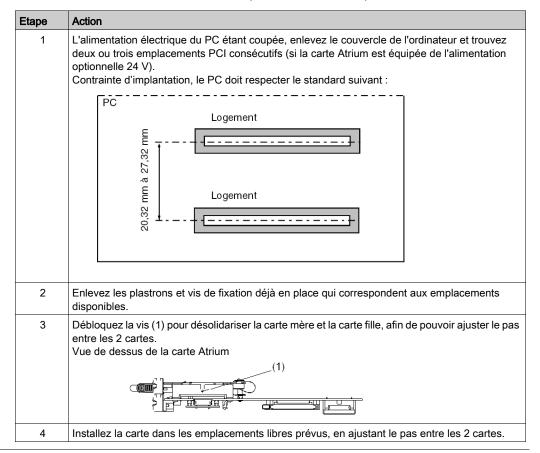
Aucune opération particulière n'est demandée à l'utilisateur. Le processeur est Plug&Play et le système d'exploitation du micro-ordinateur fixe l'adresse d'E/S et le numéro d'interruption (IRQ).

Comment installer la carte processeur Atrium dans le PC

Conditions préliminaires

Les opérations préliminaires d'adressage (voir page 211) doivent être effectuées.

A DANGER


CHOC ELECTRIQUE

L'installation du processeur dans le PC nécessite obligatoirement que celui- ci soit hors tension.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Procédure

Le tableau suivant décrit la marche à suivre pour installer la carte processeur dans le PC:

Etape	Action
5	Solidarisez la carte au PC par vissage des vis de fixation enlevées précédemment (étape 2).
6	Rebloquez la vis (1) (voir étape 3).
7	Refermez l'ordinateur et remettez en place tous les câbles et accessoires qui ont été mis hors tension : ■ câble de bus X et terminaison de ligne TSX TLYEX /B Attention : le processeur passe à l'état d'erreur système si la terminaison de ligne /B n'est pas installée : □ sur le processeur TSX PCI 57 si celui n'est pas relié à un rack par un câble X-Bus TSX CBY Dans ce cas, installez obligatoirement la terminaison de ligne /B sur la sortie bus X du processeur. □ sur le connecteur disponible du dernier rack de la station si le processeur est relié à un rack par un câble de bus X TSX CBY Dans ce cas, installez obligatoirement la terminaison de ligne /B. Cet équipement permet d'indiquer que le bus X n'a pas été adapté.
	 câble Bus Fipio et carte PCMCIA de communication si nécessaire. Attention: avant l'insertion de la carte PCMCIA, desserrez la vis du verrou mécanique situé sur la partie haute du logement de la carte PCMCIA. Après installation de la carte PCMCIA, mettez en place le verrou mécanique et serrez la vis.
8	Mettez sous tension le PC et procédez à l'installation des différents logiciels : pilote PCIWAY correspondant au SE installé : WINDOWS 2000 ou XP (voir instructions de service fournies avec le processeur), serveur de données OFS si nécessaire, logiciel de programmation.

Installation de la carte d'alimentation 24 V

Généralités

Il est possible d'utiliser cette carte de deux manières :

- comme simple alimentation 24 VCC,
- comme alimentation 24 V ainsi que pour l'intégration du processeur Atrium dans un segment de bus X.

A DANGER

CHOC ELECTRIQUE

Pour installer ces accessoires, il faut que la carte de processeur Atrium, et donc le PC, soient déconnectés de l'alimentation secteur.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Installation de l'alimentation 24 V uniquement

Effectuez les étapes suivantes :

Etape	Action	Illustration
1	Lors du montage de la carte de processeur dans le PC, insérez la carte d'alimentation dans l'emplacement prévu à cette fin, comme l'indique l'illustration ci-contre, puis raccordez le câble ruban de connexion au connecteur J4 de la carte de processeur.	
2	Raccordez le connecteur femelle à l'alimentation externe à l'aide d'un câble, en respectant le brochage illustré ci-contre. Connectez les trois fils du câble d'alimentation en veillant à respecter les polarités.	Châssis _{0 V}

Etape	Action	Illustration
3	Montez le connecteur dans le cache, fixez-y le câble (voir le schéma ci-contre), puis fermez le cache en appuyant fermement dessus.	
4	Raccordez le câble d'alimentation à la connexion d'alimentation de la carte.	

Installation et placement dans un segment de câble de bus X

Effectuez les étapes suivantes :

Etape	Action	Illustration
1	Enlevez la terminaison de ligne A/ située sur le processeur.	
2	Insérez la carte fille en lieu et place de la terminaison de ligne A/.	

Etape	Action	Illustration
3	Lors du montage de la carte de processeur dans le PC, insérez la carte d'alimentation dans l'emplacement prévu à cette fin, comme l'indique l'illustration ci-contre, puis raccordez le câble ruban de connexion au connecteur J4 de la carte de processeur.	
4	Raccordez le câble au connecteur de la carte fille installée à l'étape 2. Le câble est équipé de trois connecteurs. Le connecteur intermédiaire doit être connecté en cas d'utilisation d'une carte TSX IBX 100. 1. sans carte TSX IBX 100 Carte Processeur Atrium 2. avec une carte TSX IBX 100 Carte alimentation Carte TSX IBX 100	
5	Effectuez les étapes 2, 3 et 4 de la manière décrite dans la procédure d'installation d'une alimentation 24 V uniquement.	

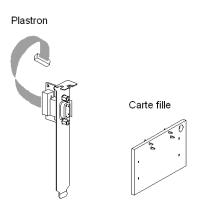
Exemple de topologie

Voir : Placement du processeur Atrium dans un segment de bus X. (voir page 221)

Intégration du processeur Atrium à l'intérieur d'un segment de bus X

Généralités

A la base, le processeur Atrium est équipé pour être intégré en tête de ligne du bus X, de ce fait il intègre la terminaison de ligne A/.

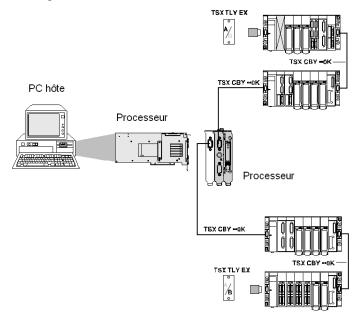

Si vous souhaitez intégrer le processeur à l'intérieur d'un tronçon de Bus X, deux accessoires optionnels TSX PCI ACC1 permettent cette utilisation :

- un plastron équipé :
 - o d'un connecteur SUB-D 9 broches pour raccordement d'un câble de bus X TSX CBY.
 - o d'une nappe pour raccordement du connecteur SUB-D 9 broches à la carte processeur.
- une carte fille équipée de deux connecteurs qui assurent la fonction d'interface entre la carte processeur et le connecteur SUB-D 9 broches du plastron décrit précédemment. Cette carte fille se monte en lieu et place de la terminaison de ligne A/, montée à la base sur la carte processeur.

Remarque: L'alimentation optionnelle 24 V TSX PSI 2010 permet aussi de réaliser cette fonction.

Illustration

Plastron et carte fille :


Procédure d'installation

Effectuez les étapes suivantes :

Etape	Action	Illustration
1	Enlevez de son emplacement la terminaison de ligne A/ située sur le processeur.	
2	Mettez en lieu et place de la terminaison de ligne A/, la carte fille.	
3	La carte processeur étant en place dans le PC, fixez le plastron dans l'emplacement disponible, situé immédiatement à droite de la carte processeur comme indiqué sur la figure ci-dessous.	
4	Raccordez la nappe sur le connecteur de la carte fille installée à l'étape 2.	

Exemple de topologie

Illustration d'un exemple de topologie d'une station Atrium avec le processeur intégré à l'intérieur d'un segment de bus X

NOTE : Dans ce cas, le processeur n'étant plus intégré en tête de ligne, les terminaisons de ligne **TSX TLY EX A/** et /B devront être installées sur chacun des racks situés en bout de ligne.

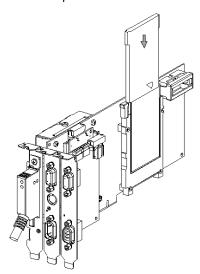
Comment monter/démonter la carte d'extension mémoire sur le processeur Atrium

Principe

Pour installer la carte mémoire sur le processeur Atrium, effectuez les étapes suivantes :

Etape	Action
1	Positionnez la carte PCMCIA dans l'emplacement prévu à cet effet.
2	Faites glisser celle-ci jusqu'à ce qu'elle arrive en butée. Remarque : si la carte n'est pas insérée dans le bon sens, elle dépasse largement du plastron. Pour vérifier que la carte a été positionnée dans le bon sens, vérifiez que son extrémité supérieure arrive en limite du plastron et qu'elle est bien fixée dans son connecteur.
3	Positionnez la carte dans le PC hors tension.

AATTENTION


DESTRUCTION DE CARTE MEMOIRE

La carte d'extension mémoire doit être installée sur la carte processeur hors tension et avant la mise en place de celle-ci dans le PC.

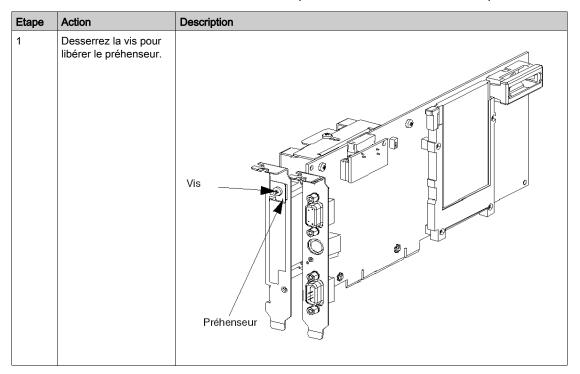
Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Illustration

Schéma explicatif:

NOTE : si le programme contenu dans la cartouche mémoire PCMCIA comporte l'option **RUN AUTO**, le processeur démarrera automatiquement en mode RUN après insertion de la cartouche et démarrage du PC.

Cartes mémoires pour processeurs Atrium


Généralités

Voir Cartes mémoire standard pour automates, page 101 et Cartes mémoire de type application\fichiers et de type stockage de fichiers, page 103.

Montage/démontage des cartes de communication sur le processeur Atrium

Principe

Pour installer la carte de communication sur le processeur Atrium, effectuez les étapes suivantes :

Etape	Action	Description
2	Faites glisser le préhenseur vers le haut pour permettre l'insertion de la carte PCMCIA dans l'emplacement. Remarque: veillez à sélectionner le cache sans ailettes pour la carte PCMCIA; les autres caches empêchent l'insertion de la carte.	capot Logement de PCMCIA carte de communication

Etape	Action	Description
3	Faites glisser le préhenseur vers le bas pour bloquer la carte PCMCIA et fixez-la à l'aide de la vis.	

AATTENTION

DESTRUCTION DES CARTES DE COMMUNICATION

Les cartes de communication doivent être installées sur la carte de processeur hors tension et avant la mise en place de celle-ci dans le PC.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Traitement sur insertion/extraction d'une carte mémoire PCMCIA sur un automate Atrium

Généralités

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'EQUIPEMENT

La carte mémoire PCMCIA ne doit pas être insérée ou extraite sous tension sur un processeur Atrium. Ces manipulations, bien que non dangereuses pour le processeur ou tout autre équipement, entraînent un comportement aléatoire du processeur.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'APPLICATION

Assurez-vous, avant d'insérer la carte mémoire dans l'automate, que celle-ci contient l'application utilisateur correcte.

Si le programme inclus dans la carte mémoire PCMCIA comporte l'option RUN AUTO, le processeur démarrera automatiquement en mode RUN après insertion de la carte et mise sous tension du PC.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Précautions à prendre lors du remplacement d'un processeur Atrium

Important

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'EQUIPEMENT

Dans le cas du remplacement d'un processeur Atrium par un autre processeur non vierge (processeur ayant déjà été programmé et contenant une application), il est obligatoire de mettre hors tension tous les organes de commande de la station automate.

Avant de remettre les unités de commande sous tension, vérifiez que le processeur contient l'application requise.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Chapitre 30

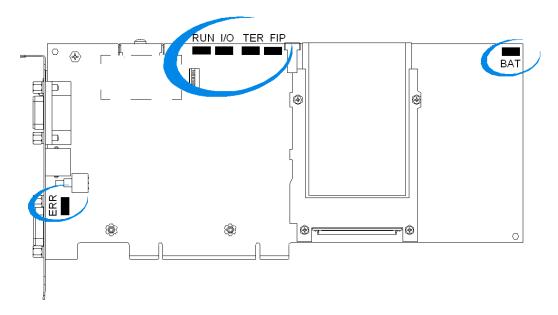
Processeurs Atrium : Diagnostic

Objet de ce chapitre

Ce chapitre traite du diagnostic sur les processeurs Atrium.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :


Sujet	Page
Description des voyants des processeurs Atrium	232
Changement de la pile de sauvegarde mémoire RAM avec Atrium	234
Effet de l'action du bouton RESET du processeur	
Comportement du processeur Atrium suite à une action sur le PC	238
Recherche des défauts à partir des voyants d'état du processeur	239

Description des voyants des processeurs Atrium

Repérage des voyants

Six voyants (RUN, TER, BAT, I/O, FIP et ERR) situés sur la carte processeur permettent un diagnostic rapide sur l'état de la station automate.

Voyants sur carte TSX PCI 57:

Compte tenu du faible espace disponible sur le plastron, seul le voyant ERR est visible lorsque le PC accueillant le processeur est fermé.

Afin d'améliorer le confort de l'utilisateur, l'état des voyants RUN, I/O, ERR et FIP est affiché via un utilitaire dans la barre de tâches du système Windows 2000 ou Windows XP du PC accueillant la carte processeur. Cette fonctionnalité n'est disponible que lorsque le PC hôte est opérationnel (PCIWAY installé)

Description

Le tableau suivant décrit le rôle de chaque voyant :

Voyant	Allumé	Clignotant ⊗	Eteint
BAT (rouge)	 absence de pile, pile usagée, pile à l'envers, type de pile non conforme. 	-	Fonctionnement normal.
RUN (vert)	Automate en marche normale, exécution du programme.	Automate en STOP ou en défaut logiciel bloquant.	 automate non configuré : application absente, non valide ou incompatible, automate en erreur : défaut processeur ou système.
TER (jaune)	-	Liaison prise terminal active. L'intensité du clignotement est fonction du trafic.	Liaison inactive.
I/O (rouge)	Défaut d'entrées/sorties en provenance d'un module, d'une voie ou défaut de configuration.	Défaut X-Bus.	Etat normal, pas de défaut interne.
FIP (jaune)	-	Liaison bus Fipio active. L'intensité du clignotement est fonction du trafic.	Liaison inactive.
ERR (rouge)	Défaut processeur ou système.	 automate non configuré (appli-cation absente, non valide ou incompatible, automate en défaut logiciel bloquant, défaut pile carte mémoire, défaut X-Bus. 	Etat normal, pas de défaut interne.

NOTE:

- Un défaut X-Bus est signalé par un clignotement simultané des voyants ERR et I/O.
- Le voyant FIP est présent uniquement sur le processeur TSX PCI 57 354.

Changement de la pile de sauvegarde mémoire RAM avec Atrium

Vue d'ensemble

Cette pile située sur le module processeur Atrium assure l'enregistrement de la mémoire RAM interne du processeur et de l'horodateur en cas de coupure de la tension secteur. Livrée dans le même conditionnement que le processeur, elle doit être mise en place par l'utilisateur.

NOTE: avec un processeur Atrium, il est inutile de mettre en place une pile dans l'alimentation du rack accueillant habituellement le processeur (rack d'adresse 0).

Première mise en place de la pile

Pour mettre en place la pile, effectuez les étapes suivantes :

Etape	Action
1	Enlevez le capot en le pinçant sur les côtés.
2	Positionnez la pile dans son logement en prenant soin de respecter les polarités.
3	Remettez en place le capot qui assure le maintien de la pile dans son emplacement.

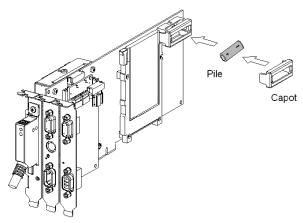
Changement de la pile

La pile peut être changée à titre préventif tous les ans ou lorsque le voyant **BAT** s'allume. Ce voyant n'est pas visible lorsque le PC est fermé, mais vous disposez d'un bit système %S8 (0 = pile de sauvegarde OK) qui peut être utilisé par le programme d'application pour créer une alarme indiquant que la pile doit être changée.

Pour changer la pile, effectuez les étapes suivantes :

Etape	Action
1	Mettez le PC hors tension.
2	Déconnectez les différents câbles raccordés au processeur.
3	Ouvrez le PC.
4	Sortez la carte de son emplacement.
5	Enlevez le capot.
6	Retirez la pile défectueuse de son emplacement.
7	Mettez en place la nouvelle pile en respectant les polarités.
8	Remettez en place le capot.
9	Remontez la carte dans son emplacement, fermez le PC, connectez les éléments externes et mettez sous tension.

A ATTENTION


PERTES DE DONNEES DE LA RAM

La durée de la procédure d'échange de la pile ne devrait pas dépasser le temps limite indiqué de mise hors tension du PC. Si cette limite est dépassée, les données contenues dans la RAM risquent d'être perdues.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Illustration

Mise en place de la pile sur le TSX PCI 57 :

Fréquence de changement de la pile

Durée de sauvegarde par la pile

Le temps pendant lequel la pile assure sa fonction de sauvegarde de la mémoire RAM interne du processeur et de l'horodateur dépend de deux facteurs :

- du pourcentage de temps où l'automate est hors tension et donc où la pile est sollicitée,
- de la température ambiante lorsque l'automate est hors tension.

Tableau récapitulatif :

Température ambiante hors fonctionnement		≤ 30 °C	40 °C	50 °C	60 °C
Temps de	Automate hors tension 12 h/j	5 ans	3 ans	2 ans	1 an
sauvegarde	Automate hors tension 1 h/j	5 ans	5 ans	4,5 ans	4 ans

Autonomie d'enregistrement par le processeur

Les processeurs disposent en local d'une autonomie d'enregistrement de la mémoire RAM interne du processeur et de l'horodateur permettant le démontage :

• de la pile du processeur Atrium.

Le temps de sauvegarde dépend de la température ambiante.

Dans l'hypothèse où le processeur était précédemment sous tension, le temps garanti varie de la manière suivante :

Température ambiante durant la mise hors tension	20 °C	30 °C	40 °C	50 °C
Temps de sauvegarde	2 h	45 mn	20 mn	8 mn

Effet de l'action du bouton RESET du processeur

Généralités

Tous les processeurs disposent en face avant d'un bouton RESET, qui permet lorsqu'il est actionné de déclencher un démarrage à froid de l'automate, en RUN ou en STOP (1), sur l'application contenue dans la carte mémoire (ou en RAM interne).

RESET suite à un défaut du processeur

Dès l'apparition d'un défaut processeur, le relais alarme du rack 0 (2) est désactivé (contact ouvert) et les sorties des modules passent en position de repli ou sont maintenues en l'état selon le choix fait en configuration. Une action sur le bouton de RESET provoque un démarrage à froid de l'automate forcé en STOP.

- (1) Le démarrage en RUN ou en STOP est défini lors de la configuration.
- (2) Avec le processeur ce relais n'est pas commandé.

NOTE: Lorsque le bouton RESET est actionné et pendant le démarrage à froid de l'automate, la liaison terminal n'est plus active.

Comportement du processeur Atrium suite à une action sur le PC

Généralités

Le tableau suivant décrit les différentes actions sur le PC et ce que ça implique sur le processeur Atrium :

Action sur le PC	Comportement du processeur Atrium
Mise hors tension accidentelle et remise sous tension du PC accueillant l'Atrium	reprise à chaud si le contexte application n'a pas changé (1).
Micro-coupures sur le réseau alimentant le PC	Le processeur Atrium ne disposant pas de mécanisme de filtrage des micro-coupures, toute micro-coupure non filtrée par l'alimentation interne du PC entraîne une reprise à chaud du processeur si le contexte application n'a pas changé (1).
Commande logicielle de redémarrage : Restart	Cette action n'a pas d'effet sur l'état courant du processeur Atrium (si le processeur est en RUN, il reste en RUN, etc.). Il ne déclenche ni reprise à chaud, ni redémarrage à froid du processeur.
Commande logicielle d'arrêt : Shut down	Reprise à chaud du processeur Atrium si le contexte application n'a pas changé, au moment du redémarrage du PC. Remarque: si l'alimentation 24V est présente et connectée, cette commande n'a pas d'effet sur l'état de fonctionnement du processeur Atrium (perte néanmoins de la connexion PCI).

(1) dans le cas où l'alimentation optionnelle 24 V est présente et connectée sous tension, la mise hors tension du PC n'a pas d'incidence sur le fonctionnement du processeur Atrium.

NOTE: Un blocage logiciel du PC n'a pas d'effet sur l'état courant du processeur (comportement identique à un RESET logiciel du PC).

Recherche des défauts à partir des voyants d'état du processeur

Généralités

Voir:

- Recherche des défauts à partir des voyants d'état du processeur, page 135,
- Défauts non bloquants, page 136,
- Défauts bloquants, page 138,
- Défauts processeurs ou système, page 139.

Chapitre 31 Processeur TSX PCI 57 204

Caractéristiques générales des processeurs TSX PCI 57 204

Processeur TSX PCI 57 204

Le tableau suivant présente les caractéristiques générales des processeurs TSX PCI 57 204.

Caractéristiques			TSX PCI 57 204
Configuration	Nombre maximum de racks TSX RKY 12EX		8
maximale	Nombre maxi	mum de racks TSX RKY 4EX/6EX/8EX	16
	Nombre d'em	placements maximum	111
Fonctions	Nb maxi de	E/S TOR en rack	1024
	voies	E/S analogiques en rack	80
		Métier	24
	Nb maxi de	Uni-Telway intégré (prise terminal)	1
	connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	2
		Fipio maître (intégré)	-
		Bus de terrain tiers	1
		Bus de terrain AS-i	4
	Voies de régu	10	
	Boucles de régulation		30
	Horodateur s	oui	
Mémoire	RAM interne	sauvegardable	160 K8
	Carte mémoi	re PCMCIA (capacité maximale)	768 K8
Structure	Tâche maître		1
application	Tâche rapide		1
	Traitements s	Traitements sur événements (1 prioritaire)	
Vitesse	RAM interne	100 % booléen	4,76 Kins/ms (1)
d'exécution du		65 % booléen + 35 % numérique	3,57 Kins/ms (1)
code application	Carte	100 % booléen	3,70 Kins/ms (1)
	PCMCIA	65 % booléen + 35 % numérique	2,50 Kins/ms (1)

Caractéristiques		TSX PCI 57 204
Temps	Instruction booléenne de base	0,19/0,21 µs (2)
d'exécution	d'exécution Instruction numérique de base	
	Instruction sur flottants	1,75/3,0 µs
Overhead	Tâche maître	1 ms
système	Tâche rapide	0,30 ms

(1) Kins: 1 024 instructions (liste)

(2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 32 Processeur TSX PCI 57 354

Caractéristiques générales du processeur TSX PCI 57 354

Processeur TSX PCI 57 354

Le tableau suivant présente les caractéristiques générales du processeur TSX PCI 57 354.

Caractéristiques			TSX PCI 57 354
Configuration	Nombre maxi	8	
maximale	Nombre maxi	16	
	Nombre d'em	placements maximum	111
Fonctions	Nombre	E/S TOR en rack	1024
	maximum de voies	E/S analogiques en rack	128
	VOICS	Métier	32
	Nombre	Uni-Telway intégré (prise terminal)	1
	maximum de connexions	Réseau (ETHWAY, Fipway, Modbus Plus)	3
	connexions	Fipio maître (intégré), nb équipement	127
		Bus de terrain tiers	3
		Bus de terrain AS-i	8
	Voies régulation		15
	Boucle de régulation		45
	Horodateur sauvegardable		oui
Mémoire	RAM interne	sauvegardable	224 K8
	Carte mémoir	Carte mémoire PCMCIA (capacité maximale)	
Structure	Tâche maître	Tâche maître	
application	Tâche rapide		1
	Traitements sur événements (1 prioritaire)		64
Vitesse d'exécution du code application	RAM interne	100 % booléen	6,67 Kins/ms (1)
		65 % booléen + 35 % numérique	4,76 Kins/ms (1)
	Carte	100 % booléen	4,55 Kins/ms (1)
	PCMCIA	65 % booléen + 35 % numérique	3,13 Kins/ms (1)

Caractéristiques		TSX PCI 57 354
Temps	Instruction booléenne de base	0,12/0,17 µs (2)
d'exécution	d'exécution Instruction numérique de base	
	Instruction sur flottants	1,75/3,30 µs (2)
Overhead	Tâche maître	1 ms
système	Tâche rapide	0,35 ms

(1) Kins: 1 024 instructions (liste)

(2) La première valeur correspond au temps d'exécution lorsque l'application est en RAM interne du processeur, la seconde valeur correspond au temps d'exécution lorsque l'application est dans une carte PCMCIA.

Chapitre 33

Processeurs Atrium : caractéristiques générales

Objectif de ce chapitre

Ce chapitre présente les caractéristiques des équipements utiles lors de la mise en oeuvre d'une station Atrium .

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Caractéristiques des processeurs Atrium	246
Caractéristique électriques des processeurs Atrium et des équipements connectables et intrégrable	247
Définition et comptage des voies spécifiques	250
Performances des processeurs	251

Caractéristiques des processeurs Atrium

Caractéristiques

Un processeur Atrium est composé :

- d'un processeur d'usage général,
- d'un processeur dédié au contrôle commande.

Le tableau suivant présente les caractéristiques principales des différents processeurs :

Processeur	Processeur principal	Fréquence du processeur principal (MHz)	Processeur Automation	Fréquence du processeur automation (MHz)
TPC X57 0244	INTEL ou AMD 486	48	SONIX	48
TSX PCI57 204	INTEL ou AMD 486	72	SONIX	48
TPC X57 204	INTEL ou AMD 486	72	SONIX	48
TSX PCI57 354	INTEL ou AMD 486	72	SONIX	48

Caractéristique électriques des processeurs Atrium et des équipements connectables et intrégrable

Généralités

Les processeurs peuvent recevoir certains équipements non auto-alimentés, il sera donc nécessaire de tenir compte de la consommation de ces équipements lors de l'établissement du bilan global de consommation.

- Equipements non auto-alimentés connectables sur la prise terminal :
 - o terminal de réglage : T FTX 117 ADJUST,
 - o boîtier TSX P ACC01 pour raccordement au bus Uni-Telway.
- Equipements non auto-alimentés intégrables dans le processeur :
 - o cartes mémoire PCMCIA,
 - o cartes de communication PCMCIA TSX FPP 10/20,
 - o carte de communication PCMCIA TSX SCP 111/112/114,
 - o carte de communication PCMCIA TSX MBP 100.

Particularité pour les processeurs Atrium

Les processeurs disposent de leur propre alimentation 5VDC, générée à partir de l'alimentation 12VDC du PC hôte. De ce fait, l'alimentation 12 VDC du PC hôte devra disposer d'une puissance suffisante pour accueillir un processeur Atrium.

Consommation (processeurs + cartes PCMCIA)

Ce tableau vous présente la consommation sur 12VDC du PC hôte :

Processeur + carte mémoire PCMCIA	Consommation typique	Consommation maximale
TSX PCI 57 204	625 mA	1250 mA
TSX PCI 57 354	760 mA	1520 mA

Puissance dissipée (processeurs + cartes PCMCIA)

Ce tableau fait état de la puissance dissipée des processeurs Atrium :

Processeur + carte mémoire PCMCIA	Consommation typique	Consommation maximale
TSX PCI 57 204	7,5W	15 W
TSX PCI 57 354	9,1W	18,3 W

Consommation equipements connectables et intégrables dans le processeur

Consommation:

Consommation sur 12VDC du PC hôte		Typique	Maximale
Equipement non auto-alimentés connectables sur prise terminal (TER)	TFTX 117 ADJUST	144 mA	157 mA
	TSXPACC01	69 mA	116 mA
Carte de communication PCMCIA intégrables dans le processeur	TSXFPP10	153 mA	167 mA
	TSXFPP20	153 mA	167 mA
	TSXSCP111	65 mA	139 mA
	TSXSCP112	56 mA	139 mA
	TSXSCP114	69 mA	139 mA
	TSXMBP100	102 mA	144 mA

Puissance dissipée équipements connectables et intégrables dans le processeur

Puissance dissipée :

Puissance dissipée		Typique	Maximale
Equipement non auto-alimentés connectables sur prise terminal (TER)	TFTX 117 ADJUST	1,7 W	1,9 W
	TSXPACC01	0,8 W	1,4 W
Carte de communication PCMCIA intégrables dans le processeur	TSXFPP10	1,8 W	2,0 W
	TSXFPP20	1,8 W	2,0W
	TSXSCP111	0,8 W	1,7 W
	TSXSCP112	0,7 W	1,7 W
	TSXSCP114	0,8 W	1,7 W
	TSXMBP100	1,2 W	1,7 W

Caractéristiques de la carte optionnelle 24 V

Ce tableau de caractéristiques :

Caractéristique			Valeur	
Primaire	Tension	Nominale	24 VDC	
		Limite (ondulation incluse)	19,230 VDC (possible jusqu'à 36V)	
	Courant	Nominal d'entrée I eff	1,1 A à 24 VDC	
	Mise sous tension initiale à 25°C	I appel	100 A à 24 VDC	
		I2t à l'enclenchement	3 A2s	
		t à l'enclenchement	0,04 As	
	Durée microcoupure	24V	7ms	
	Protection intégrée	Par fusible temporisée	2A	
Secondaire	Puissance	Utile totale typique	4 W	
	Sortie 15 VDC	Tension nominale	15,5 V	
Isolement	Tenue diélectrique	Primaire/secondaire	non isolé, 0V interne elié à la masse du PC	
Conformité aux normes			IEC 1131-2	

Définition et comptage des voies spécifiques

Tableau récapitulatif

Applications:

Application		Module/carte	Voies spécifiques	Numéro
Comptage		TSXCTY2A	Oui	2
		TSXCTY2C	Oui	2
		TSXCTY4A	Oui	4
Commande de mouvement		TSXCAY21	Oui	2
		TSXCAY41	Oui	4
		TSXCAY22	Oui	2
		TSXCAY42	Oui	4
		TSXCAY33	Oui	3
Commande pas à pas		TSXCFY11	Oui	1
		TSXCFY21	Oui	2
Pesage		TSXISPY101	Oui	1
Liaison série de communication		TSXSCP11. dans le processeur	Non	0(*)
		TSXJNP11. dans le TSXSCY21.	Oui	1
		TSXJNP11. dans le TSXSCY21.	Oui	1
		TSXSCY 21 (voie intégrée)	Oui	1
	Modem	TSXMDM10	Oui	1
	Agent Fipio	TSXFPP10 dans le processeur	Non	0(*)
	Fipio maître	Intégrée au processeur	Non	0(*)

^(*) Bien que spécifiques, ces voies ne sont pas à prendre en compte dans le calcul du nombre maximum de voies spécifiques prises en charge par le processeur.

NOTE : seules les voies configurées à partir du logiciel de programmation sont comptabilisées.

Performances des processeurs

Généralités

Voir Performances des processeurs, page 181.

Partie IV TSX PSY, alimentations

Objet de cette partie

Cette partie a pour objet de décrire les alimentations TSX PSY ... et leur mise en œuvre.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	Page
34	Alimentations TSX PSY: présentation	255
35	Alimentations TSX PSY: installation	263
36	Alimentations TSX PSY : diagnostics	281
37	Alimentations TSX PSY : fonctions auxiliaires	287
38	Alimentations TSX PSY : bilan de consommation et de puissance	293
39	Module d'alimentation TSX PSY 2600	303
40	Module d'alimentation TSX PSY 5500	305
41	Module d'alimentation TSX PSY 8500	307
42	Module d'alimentation TSX PSY 1610	309
43	Module d'alimentation TSX PSY 3610	311
44	Module d'alimentation TSX PSY 5520	313

Chapitre 34

Alimentations TSX PSY...: présentation

Objet de ce chapitre

Ce chapitre a pour objectif de vous présenter les alimentations TSX PSY.....

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation générale	256
Modules d'alimentation : description	
Catalogue des alimentations TSX PSY	

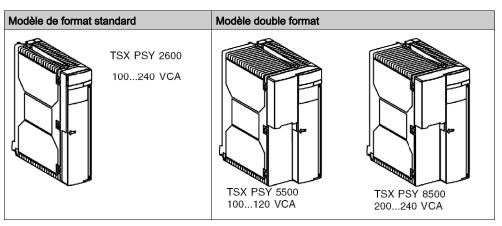
Présentation générale

Présentation

Les modules d'alimentation **TSX PSY...** sont destinés à l'alimentation de chaque rack **TSX RKY...** et de ses modules. Le module d'alimentation est choisi en fonction du réseau de distribution (courant alternatif ou courant continu) et de la puissance nécessaire (modèle standard ou double format).

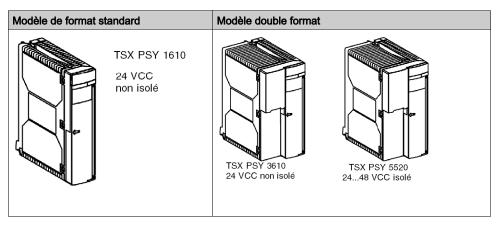
Il existe plusieurs types de modules d'alimentation :

- modules d'alimentation pour réseau à courant alternatif
- modules d'alimentation pour réseau à courant continu


Fonctions auxiliaires des modules d'alimentation

Chaque module d'alimentation a des fonctions auxiliaires :

- bloc de visualisation
- relais alarme
- emplacement de pile pour la sauvegarde des données contenues dans la mémoire RAM du processeur
- bouton à pointe de crayon qui, lorsqu'il est actionné, simule une coupure de l'alimentation et lance une reprise à chaud de l'application
- alimentation capteur 24 VCC (uniquement sur les modules alimentés à partir d'un réseau à courant alternatif)

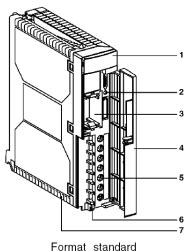

Modules d'alimentation pour réseau à courant alternatif

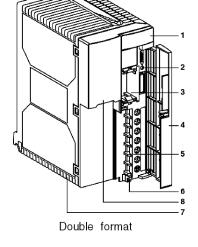
Le tableau suivant présente les types de module d'alimentation en fonction de leur format :

Modules d'alimentation pour réseau à courant continu

Le tableau suivant présente les types de module d'alimentation en fonction de leur format :

Modules d'alimentation : description


Présentation


Les modèles d'alimentation prennent la forme suivante :

- modules de format standard, pour les modules TSX PSY 2600 et TSX PSY 1610
- modules double format, pour les modules TSX PSY 5500/3610/5520/8500

Dessin d'illustration

Les numéros des illustrations suivantes indiquent les différents composants d'un module d'alimentation en format standard et d'un module d'alimentation en double format :

258 35010525 12/2018

Description

Ce tableau décrit les composants d'un module d'alimentation :

Numéro	Fonction
1	Bloc de visualisation comprenant : un voyant OK (vert), allumé si les tensions sont présentes et correctes un voyant BAT (rouge), allumé lorsque la pile s'épuise ou est absente, un voyant 24V (vert), allumé si le capteur de tension est présent. Ce voyant n'est présent que sur les modules d'alimentation à courant alternatif TSX PSY 2600/5500/8500.
2	Bouton RESET à pointe de crayon qui, lorsqu'il est actionné, déclenche une reprise à chaud de l'application
3	Emplacement pour la pile permettant de sauvegarder la RAM interne du processeur.
4	Volet assurant la protection de la face avant du module
5	Bornier à vis pour le raccordement de : • réseau d'alimentation • contact relais alarme • alimentation capteur pour les alimentations à courant alternatif TSX PSY 2600/5500/8500
6	Orifice permettant le passage d'un collier de serrage des câbles
7	Fusible situé sous la protection du module : tension 24VR sur l'alimentation à courant continu TSX PSY 3610 tension primaire sur l'alimentation à courant continu TSX PSY 1610
	Remarque : sur les modules TSX PSY 2600/5500/5520/8500, le fusible de protection de la tension primaire se trouve à l'intérieur du module et il n'est pas possible d'y accéder.
8	Sélecteur de tension 110/220, présent uniquement sur les alimentations à courant alternatif TSX PSY 5500/8500. A la livraison, le sélecteur est positionné sur 220.

Catalogue des alimentations TSX PSY ...

Catalogue des alimentations pour réseaux à courant alternatif

Le tableau suivant décrit les principales caractéristiques (maximales) des alimentations TSX PSY ... 2600/5500/8500.

Références	TSX PSY 2600	TSX PSY 5500	TSX PSY 8500	
Caractéristiques d'entrées		T	T.	
Tensions nominales	100240 VCA	100120 VCA / 200240 VCA	100120 VCA / 200240 VCA	
Valeurs limites	85264 VCA	85140 VCA / 190264 VCA	85140 VCA / 190264 VCA	
Fréquence limite	4763 Hz	4763 Hz	4763 Hz	
Durée micro-coupures secteur acceptée	inférieure ou égale à 10 ms	inférieure ou égale à 10 ms	inférieure ou égale à 10 ms	
Puissance apparente	50 VA	150 VA	150 VA	
Courant nominal d'entrée	0,5 A à 100 V 0,3 A à 240 V	1,7 A à 100 V 0,5 A à 240 V	1,7 A à 100 V 0,5 A à 240 V	
Caractéristiques de sorties	3			
Puissance totale	26 W	50 W	80 W	
Tensions de sortie	5 V, 24 VR (1) 24 VC (2)	5 V, 24 VR (1) 24 VC (2)	5 V, 24 VC (2)	
Courant nominal 5 V	5 A	7 A	15 A	
Courant nominal 24 VR	0,6 A	0,8 A	non fourni	
Courant nominal 24 VC	0,5 A	0,8 A	1,6 A	
Fonctions auxiliaires	T			
Relais alarme	oui (1 contact à fermeture, libre de potentiel sur bornier			
Visualisation oui, par voyant en face avant				
Pile de sauvegarde	Pile de sauvegarde oui (surveillance état par voyant en face avant du module)			
Conformité aux normes	IEC 1131-2			

- (1) Tension 24V destinée à l'alimentation des relais installés sur les modules « sorties à relais »
- (2) Tension 24 V destinée à l'alimentation de capteurs

Catalogue des alimentations pour réseaux à courant continu

Le tableau suivant décrit les principales caractéristiques (maximales) des alimentations TSX PSY ... 1610/3610/5520.

Références	TSX PSY 1610	TSX PSY 3610	TSX PSY 5520		
Caractéristiques d'entrées					
Tensions nominales	24 VCC non isolée	24 VCC non isolée	2448 VCC isolée		
Valeurs limites	19,230 VCC	19,230 VCC	19,260 VCC		
Durée micro-coupures secteur acceptée	inférieure ou égale à 1 ms	inférieure ou égale à 1 ms	inférieure ou égale à 1 ms		
Courant nominal d'entrée ≤ 1,5 A		≤ 2,7 A	≤ 3 A/24 V 1,5 A/48 V		
Caractéristiques de sorties	3				
Puissance totale	26 W	50 W	80 W		
Tensions de sortie	5 V, 24 VR (1)	5 V, 24 VR (1)	5 V, 24 VR (1)		
Courant nominal 5 V	5 A	7 A	7 A		
Courant nominal 24	0,6 A	0,8 A	0,8 A		
Fonctions auxiliaires					
Relais alarme	oui (1 contact à fermeture, libre de potentiel sur bornier				
Visualisation	oui, par voyant en face avant				
Pile de sauvegarde	oui (surveillance état par	voyant en face avant du	module)		
Conformité aux normes	IEC 1131-2				

(1) Tension 24V destinée à l'alimentation des relais installés sur les modules « sorties à relais ».

Chapitre 35

Alimentations TSX PSY ...: installation

Objectif de ce chapitre

Ce chapitre traite de l'installation d'alimentations TSX PSY

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Installation/montage des alimentations TSX PSY	264
Règles de raccordement des alimentations TSX PSY	265
Raccordement de modules d'alimentation pour réseau à courant alternatif	267
Raccordement de modules d'alimentation à courant continu à partir d'un réseau à courant continu flottant 24 ou 48 VCC	269
Raccordement des modules d'alimentation à courant continu à partir d'un réseau à courant alternatif	271
Asservissement des alimentations capteurs et pré-actionneurs	275
Définition d'organes de protection au début d'une ligne	278

Installation/montage des alimentations TSX PSY

Montage

Le montage du module d'alimentation TSX PSY est identique à celui des modules processeurs et, d'une façon générale, identique au montage des autres modules (voir *Comment monter les modules processeur, page 98*).

Installation

Ce tableau vous décrit le principe d'installation des alimentations :

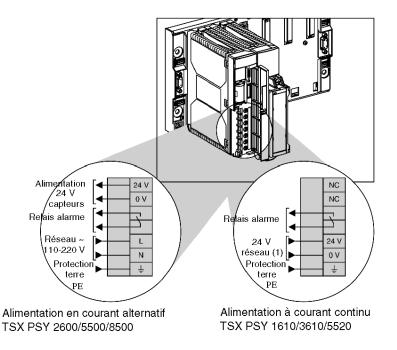
Type d'alimentation	Description	Illustration		
Format standard : TSX PSY 2600/1610	S'installent dans le premier emplacement de chaque rack TSX RKY et occupent la position PS .			
Double format : TSX PSY 3610/5500/5520/8500	S'installent dans les deux premiers emplacements de chaque rack TSX RKY et occupent les positions PS et 00 .			

NOTE: Chaque module d'alimentation est pourvu d'un système de détrompage qui ne permet son installation qu'aux emplacements désignés ci-dessus.

NOTE: le module d'alimentation TSX PSY 8500 ne délivre pas de tension 24 VR. De ce fait, un rack équipé avec ce module d'alimentation ne pourra pas recevoir certains modules tels que des modules de sorties à relais et de pesage.

Règles de raccordement des alimentations TSX PSY

Généralités


Les modules d'alimentation TSX PSY ••• sur chaque rack sont équipés d'un bornier non amovible, possédant un volet de protection, qui est utilisé pour le raccordement de l'alimentation, le relais d'alarme, la terre de protection et, pour les alimentations en courant alternatif, l'alimentation de capteurs 24 VCC.

Ce bornier à vis est équipé de vis à bride prisonnière pouvant raccorder un maximum de 2 fils d'une section de 1,5 mm ² (14 AWG) avec embouts, ou un fil d'une section de 2,5 mm ² (12 AWG) (couple de serrage maximum sur le bornier terminal : 0,8 Nm).

Les fils sortent verticalement vers le bas. Ceux-ci peuvent être maintenus par un collier serrecâble.

Dessin d'illustration

Ce diagramme présente le bornier à vis :

(1) 24V-48V alternatif pour l'alimentation TSX PSY 5520

A DANGER

CHOC ELECTRIQUE - TENSION D'ALIMENTATION INCORRECTE

Pour les modules d'alimentation TSX PSY 5500/8500, positionnez le sélecteur de tension en fonction de la tension secteur utilisée (110 ou 220 VCA).

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Prévoyez un dispositif de protection et de coupure de l'alimentation en amont de la station automate.

Lors du choix des organes de protection, l'utilisateur devra tenir compte des courants d'appels définis dans les tableaux de caractéristiques de chaque alimentation.

NOTE: comme les modules d'alimentation en courant continu TSX PSY 1610/2610/5520 ont un fort courant d'appel, il est déconseillé de les utiliser sur des réseaux à courant continu ayant une protection en limitation de courant réentrante (flood back).

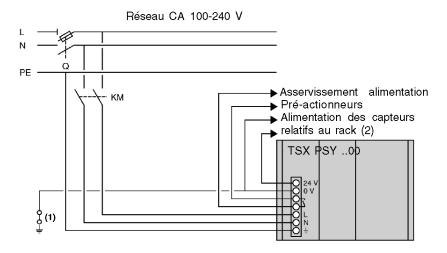
Lorsqu'un module d'alimentation est raccordé au réseau de courant continu, il est impératif de restreindre la longueur du câble d'alimentation, ce qui contribue à empêcher les pertes de transmission.

- Module d'alimentation TSX PSY 1610 :
 - o longueur limitée à 30 mètres (60 mètres aller et retour) avec fils de cuivre et section de 2,5 mm² (12 AWG),
 - o longueur limitée à 20 mètres (40 mètres aller et retour) avec fils de cuivre et section de 1,5 mm² (14 AWG).
- Module d'alimentation TSX PSY 3610 et TSX PSY 5520 :
 - o longueur limitée à 15 mètres (30 mètres aller et retour) avec fils de cuivre et section de 2,5 mm² (12 AWG),
 - o longueur limitée à 10 mètres (20 mètres aller et retour) avec fils de cuivre et section de 1,5 mm² (14 AWG).

A AVERTISSEMENT

MISE A LA TERRE DE L'ALIMENTATION EN COURANT CONTINU

Le 0 V et la terre physique sont reliés en interne dans les automates, les accessoires de câblage réseau, et certaines consoles de commande.


Pour les applications utilisant une installation « flottante », il faut prendre certaines mesures en ce qui concerne les raccordements. Elles dépendent du mode d'installation retenu. Dans ces cas, il est impératif d'utiliser des alimentations en courant continu isolées.

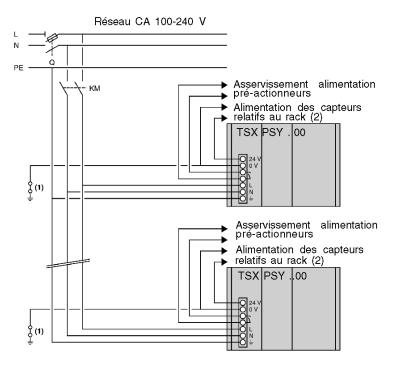
Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Raccordement de modules d'alimentation pour réseau à courant alternatif

Raccordement d'une station automate constituée d'un seul rack

Illustration:

Q : sectionneur général


KM : contacteur de ligne ou disjoncteur

- (1) barrette d'isolement pour recherche d'un défaut de mise à la masse
- (2) courant disponible :
- 0,6 A avec module d'alimentation TSX PSY 2600 (voir page 303)
- 0.8 A avec module d'alimentation TSX PSY 5500 (voir page 305)
- 1,6 A avec module d'alimentation TSX PSY 8500 (voir page 307)

NOTE : Fusibles de protection : les modules d'alimentation à courant alternatif TSX PSY 2600/5500/8500 sont équipés d'origine d'un fusible de protection. Ce fusible, en série avec l'entrée **L** est situé à l'intérieur du module et donc inaccessible.

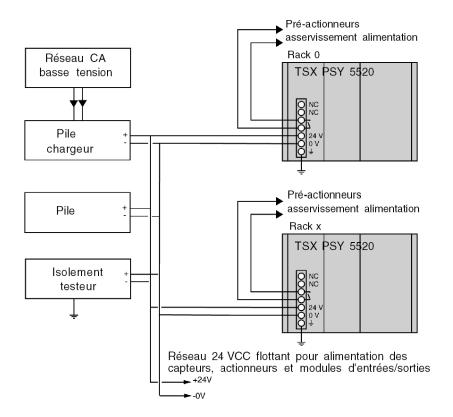
Raccordement d'une station automate constituée de plusieurs racks

Illustration:

NOTE: Dans le cas de plusieurs stations automate, alimentées à partir d'un même réseau, le principe de raccordement est identique.

Q : sectionneur général

KM : contacteur de ligne ou disjoncteur


- (1) barrette d'isolement pour recherche d'un défaut de mise à la masse
- (2) courant disponible:
- 0,6 A avec module d'alimentation TSX PSY 2600 (voir page 303)
- 0,8 A avec module d'alimentation TSX PSY 5500 (voir page 305)
- 1,6 A avec module d'alimentation TSX PSY 8500 (voir page 307)

NOTE: Fusibles de protection: les modules d'alimentation à courant alternatif TSX PSY 2600/5500/8500 sont équipés d'origine d'un fusible de protection. Ce fusible, en série avec l'entrée L est situé à l'intérieur du module et donc inaccessible.

Raccordement de modules d'alimentation à courant continu à partir d'un réseau à courant continu flottant 24 ou 48 VCC

Dessin d'illustration

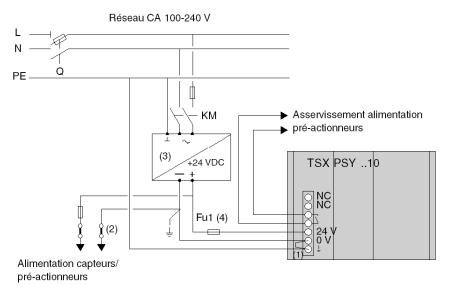
Schéma mettant le principe en évidence :

A DANGER

CHOC ELECTRIQUE - MISE A LA TERRE POUR LES MONTAGES FLOTTANTS OU LES APPLICATIONS MARINES

Dans le cas d'un montage flottant (non relié à la terre) utilisé pour des applications spécifiques, en particulier dans des **applications marines**, il convient de sélectionner une alimentation **TSX PSY 5520 (24/48 VCC)** isolée.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.


NOTE: on peut envisager un appareil qui mesure en continu le niveau d'isolation des 24 VCC (ou 48 VCC) par rapport à la masse, et donne l'alarme quand le niveau d'isolation est anormalement bas.

Les modules d'entrées/sorties de la gamme Premium sont isolés.

Raccordement des modules d'alimentation à courant continu à partir d'un réseau à courant alternatif

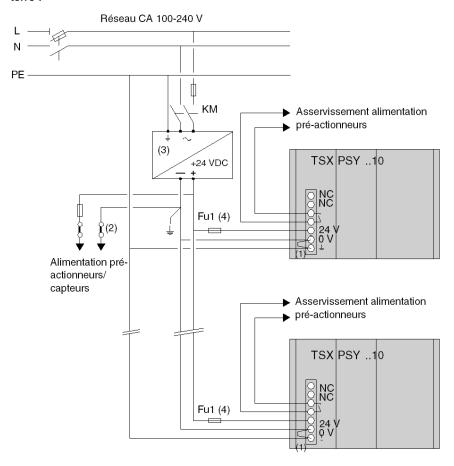
Module d'alimentation non isolé TSX PSY 1610/3610

Raccordement d'une station automate constituée d'un seul rack, avec réseau référencé à la terre :

Q: sectionneur général,

KM: contacteur de ligne ou disjoncteur,

(1): shunt externe fourni avec le module d'alimentation,


(2) : barrette d'isolement pour recherche d'un défaut de mise à la masse. Il est nécessaire dans ce cas de débrancher l'alimentation afin de déconnecter le réseau de la masse.

(3) : possibilité d'utiliser une alimentation process (voir page 315),

(4) : fusible de protection, (4 A, type temporisé) uniquement nécessaire dans le cas d'un module d'alimentation TSX PSY 3610.

Le module d'alimentation TSX PSY 1610, est équipé d'origine d'un fusible de protection situé sous le module et en série sur l'entrée 24V (fusible 3,5 A, 5x20, type temporisé).

Raccordement d'une station automate constituée de plusieurs racks, avec réseau référencé à la terre :

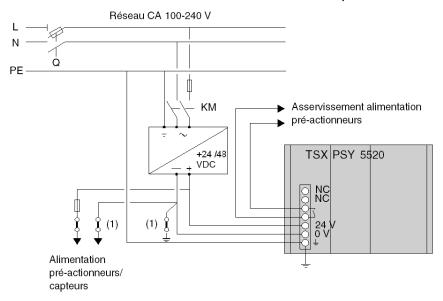
Q: sectionneur général,

KM: contacteur de ligne ou disjoncteur,

(1): shunt externe fourni avec le module d'alimentation,

(2) : barrette d'isolement pour recherche d'un défaut de mise à la masse. Il est nécessaire dans ce cas de débrancher l'alimentation afin de déconnecter le réseau de la masse,

(3) : possibilité d'utiliser une alimentation process,


(4) : fusible de protection, (4 A, type temporisé) uniquement nécessaire dans le cas d'un module d'alimentation TSX PSY 3610.

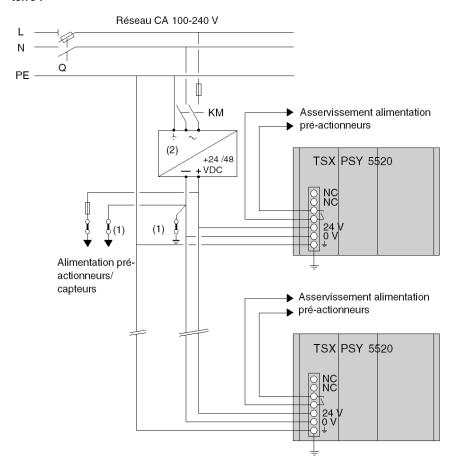
Le module d'alimentation TSX PSY 1610, est équipé d'origine d'un fusible de protection situé sous le module et en série sur l'entrée 24V (fusible 3,5 A, 5x20, type temporisé).

NOTE: Dans le cas de plusieurs stations automates, alimentées à partir d'un même réseau, le principe de raccordement est identique.

Module d'alimentation isolé TSX PSY 5520

Raccordement d'une station automate constituée d'un seul rack, avec réseau référencé à la terre :

Q: sectionneur général,


KM: contacteur de ligne ou disjoncteur,

(1) : barrette d'isolement pour recherche d'un défaut de mise à la masse,

(2) : possibilité d'utiliser une alimentation process.

NOTE: Fusible de protection : les modules d'alimentation TSX PSY 5520 sont équipés d'origine d'un fusible de protection. Ce fusible, en série avec l'entrée 24/48 V est utilisé à l'intérieur du module et non accessible.

Raccordement d'une station automate constituée de plusieurs racks, avec réseau référencé à la terre :

Q: sectionneur général,

KM: contacteur de ligne ou disjoncteur,

(1) : barrette d'isolement pour recherche d'un défaut de mise à la masse,

(2) : possibilité d'utiliser une alimentation process.

NOTE : Fusible de protection : les modules d'alimentation TSX PSY 5520 sont équipés d'origine d'un fusible de protection. Ce fusible, en série avec l'entrée 24/48 V est utilisé à l'intérieur du module et non accessible.

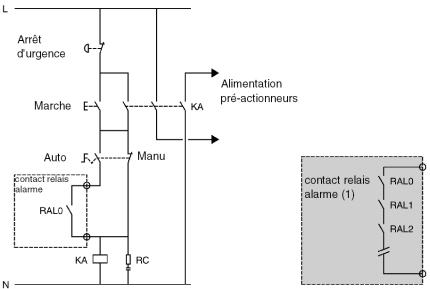
NOTE: Dans le cas de plusieurs stations automates, alimentées à partir d'un même réseau, le principe de raccordement est identique.

Asservissement des alimentations capteurs et pré-actionneurs

Comment réaliser l'asservissement

Il est conseillé de réaliser l'asservissement des différentes alimentations par la séquence suivante :

Etape	Action
1	Mettez sous tension l'alimentation de l'automate et les entrées (capteurs) par le contacteur KM (schéma <i>(voir page 271)</i>).
2	Mettez sous tension, si l'automate est en RUN et en marche AUTO, l'alimentation des sorties (pré-actionneurs) par le contacteur KA. Celle-ci est asservie au contact du relais alarme de chaque alimentation.

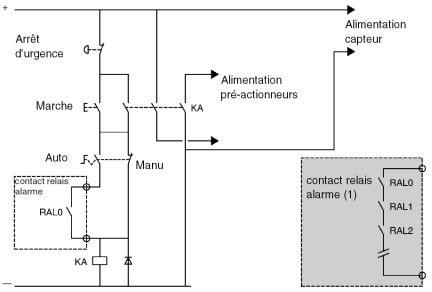

Normes de sécurité

Les normes de sécurité imposent avant redémarrage de l'installation suite à un arrêt (provoqué par une coupure secteur ou par une action sur un arrêt d'urgence), une autorisation donnée par le personnel d'exploitation.

Le commutateur MANU/AUTO donne la possibilité d'effectuer le forçage des sorties depuis un terminal, lorsque l'automate est en STOP.

Exemple 1

Station automate alimentée en courant alternatif :



KA : contact contrôlé par relais alarme depuis le module d'alimentation en mode run AUTO.

(1) Cas où la station automate est constituée de plusieurs racks : régler tous les contacts « relais alarme » en série (RAL0, RAL1, RAL2, etc.).

Exemple 2

Station automate alimentée en courant continu :

KA: contact contrôlé par relais alarme depuis le module d'alimentation en mode run AUTO.

(1) Cas où la station automate est constituée de plusieurs racks : régler tous les contacts « relais alarme » en série (RAL0, RAL1, RAL2, etc.).

Définition d'organes de protection au début d'une ligne

Introduction

Il vous est conseillé de monter un organe de protection, comme p. ex. un disjoncteur de ligne ou un fusible, au début de la ligne à l'entrée de l'alimentation réseau.

Les informations suivantes sont utiles pour définir le niveau d'intensité minimum du disjoncteur de ligne ou fusible pour un module d'alimentation donné.

Choix du disjoncteur de ligne

Pour sélectionner l'intensité du disjoncteur de ligne, il faut prendre en compte les trois caractéristiques suivantes qui sont fournies pour chaque module d'alimentation:

- le courant d'entrée nominal (I eff),
- le courant d'appel (I),
- le lt.

Sélectionnez l'intensité minimum pour le disjoncteur de ligne comme suit :

- intensité du disjoncteur de ligne IN > alimentation I rms,
- disjoncteur de ligne max. I > signal d'alimentation I,
- disjoncteur de ligne It au point A sur la courbe > alimentation It.

Illustration : caractéristiques fournies par le fabricant du disjoncteur de ligne.

Choix du fusible de ligne

Lors de la sélection du niveau d'intensité du fusible de la ligne, il faut prendre en compte les deux caractéristiques suivantes qui sont fournies pour chaque alimentation.

- le courant d'entrée nominal (I eff),
- le l²t

Sélectionnez le niveau d'intensité minimum pour le fusible comme suit :

- calibre du fusible IN > 3 x alimentation I rms.
- I²t du fusible > 3 x I²t de l'alimentation.

Les caractéristiques **I eff**, **I** appel, **It** et **I**²t de chaque module d'alimentation sont les suivantes :

Module TSX		PSY 2600	PSY 5500	PSY 8500	PSY 1610	PSY 3610	PSY 5520
l eff	par 24 VCC	-	-	-	1.5 A	2,7 A	3A
	par 48 VCC	-	-	-	-	-	1.5 A
	par 100 VCA	0,5 A	1.7 A	1.4 A	-	-	-
	par 24 VCA	0.3 A	0,5 A	0,5 A	-	-	-
I appel(1)	par 24 VCC	-	-	-	100 A	150 A	15 A
	par 48 VCC	-	-	-	-	-	15 A
	par 100 VCA	37 A	38 A	30 A	-	-	-
	par 24 VCA	75 A	38 A	60 A	-	-	-
It	par 24 VCC	-	-	-	0.1 As	0.3 As	0.25 As
	par 48 VCC	-	-	-	-	-	15 As
	par 100 VCA	0,034 As	0,11 As	0,15 As	-	-	-
	par 24 VCA	0,067 As	0,11 As	0,15 As	-	-	-
l ² t	par 24 VCC	-	-	-	6 A ² s	26 A ² s	2,2 A ² s
	par 48 VCC	-	-	-	-	-	1,8 A ² s
	par 100 VCA	0,63 A ² s	4 A ² s	15 A ² s	-	-	-
	par 24 VCA	2,6 A ² s	2 A ² s	8 A ² s	-	-	-

 $^(^1)$ Valeurs à la mise sous tension initiale et à 25 °C.

Chapitre 36

Alimentations TSX PSY ... : diagnostics

Objectif de ce chapitre

Ce chapitre présente les diagnostics des alimentations TSX PSY

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page	
Affichage sur les alimentations TSX PSY	282	
Pile de sauvegarde sur les modules d'alimentation TSX PSY		
Coupure de l'alimentation sur rack, autre que le rack 0		
Effet de l'action du bouton RESET sur un module d'alimentation	285	

Affichage sur les alimentations TSX PSY

Introduction

Chaque module d'alimentation dispose d'un bloc de visualisation comportant :

- trois voyants (OK, BAT, 24V) pour les alimentations à courant alternatif TSX PSY 2600/5500/8500.
- deux voyants (OK, BAT) pour les alimentations à courant continu TSX PSY 1610/3610/5520.

Description

Le tableau suivant décrit les différents voyants et leurs fonctions :

Voyant	Description
Voyant OK (vert)	 allumé en fonctionnement normal éteint lorsque les tensions de sorties sont en dessous des seuils
Voyant BAT (rouge)	 éteint en fonctionnement normal allumé si absence de pile, pile usagée, pile à l'envers, type de pile non conforme
Voyant 24 V (vert)	 allumé en fonctionnement éteint si la tension 24 V capteurs délivrée par l'alimentation n'est plus présente
Bouton poussoir RESET	L'actionnement de ce bouton poussoir entraîne une séquence des signaux de service identique à celle : • d'une coupure secteur lors d'une pression, • d'une mise sous tension au relâchement. Ces actions (pression et relâchement) se traduisent vis-à-vis de l'application par une reprise à chaud (voir page 189).

Alimentation capteurs

Les alimentations à courant alternatif TSX PSY 2600/5500/8500 disposent d'une alimentation intégrée délivrant une tension de 24 VCC destinée à alimenter les capteurs.

Cette alimentation capteurs est accessible sur le bornier de raccordement à vis du module.

COMPORTEMENT INATTENDU DE L'EQUIPEMENT

N'installez pas le module TSX PSY 2600/5500/8500 en parallèle avec une alimentation externe. Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

NOTE: la sortie « alimentation capteur 24 VCC » du module TSX PSY 8500 est de type TBTS (très basse tension de sécurité). De ce fait, elle garantit la sécurité de l'utilisateur.

Pile de sauvegarde sur les modules d'alimentation TSX PSY ...

Présentation

Chaque module alimentation possède un emplacement qui permet de recevoir une pile fournissant l'alimentation à la mémoire **RAM** interne située sur les processeurs afin d'assurer la sauvegarde des données lorsque l'automate est hors tension.

Cette pile est livrée dans le même conditionnement que le module alimentation. Vous devez la mettre en respectant les polarités.

NOTE: Si l'on utilise un processeur Atrium pouvant être intégré sur un PC, la pile de sauvegarde est intégrée sur le processeur et ses caractéristiques sont les mêmes que celles décrites cidessous.

Données sur la pile de sauvegarde

Caractéristiques de la pile : pile au lithium chlorure de thyonile, 3,6V/0,8 Ah, taille 1/2AA.

Références en pièce de rechange : TSX PLP 01.

Durée de sauvegarde des données : le temps de sauvegarde des données dépend de deux facteurs :

- du pourcentage de temps où l'automate est hors tension et donc où la pile est sollicitée,
- de la température ambiante lorsque l'automate est hors tension.

Tableau de la température ambiante hors tension :

Température ambiante hors fonctionnement			40° C	50° C	60° C
Temps de sauvegarde Automate hors tension 12h/j			3 ans	2 ans	1 an
	Automate hors tension 1h/j	5 ans	5 ans	4,5 ans	4 ans

Contrôle de l'état de la pile: lorsque l'alimentation est sous tension, elle surveille l'état de la pile. Si la tension de la pile est en-dessous de sa valeur nominale, le voyant BAT (rouge) s'allume pour en informer visuellement l'utilisateur. Dans ce cas, il faut échanger la pile immédiatement. Le bit système %S68 donne l'état de la pile de sauvegarde (0 = pile OK).

Changement de la pile : le changement de la pile peut s'effectuer avec le module alimentation sous tension ou immédiatement après une mise hors tension. Dans ce dernier cas, le temps d'intervention est limité.

Le temps de sauvegarde dépend de la température ambiante. En supposant que le processeur vient d'être mis sous tension, le temps typiquement nécessité pour la sauvegarde varie de la manière suivante :

Température ambiante durant la mise hors tension	20° C	30° C	40° C	50° C
Temps de sauvegarde	2h	45mn	20mn	8mn

Coupure de l'alimentation sur rack, autre que le rack 0

Généralités

Toutes les voies de ce rack sont vues en erreur par le processeur mais les autres racks ne sont pas perturbés. Les valeurs des entrées en erreur ne sont plus actualisées dans la mémoire application et sont mises à 0 dans le cas d'un module d'entrée TOR, à moins qu'elles aient été forcées, lorsqu'elles sont maintenues à la valeur de forçage.

Durée limite de coupure

Si la durée de la coupure est inférieure à 10 ms pour les alimentations alternatives ou à 1 ms pour les alimentations continues, celle-ci n'est pas vue par le programme qui s'exécute normalement.

Effet de l'action du bouton RESET sur un module d'alimentation

Généralités

Le module d'alimentation de chaque rack dispose d'un bouton RAZ sur le panneau avant. Un appui sur ce bouton déclenche une séquence d'initialisation des modules du rack en question.

Dans le cas d'un module d'alimentation du rack équipé du processeur TSX P57/TSX H57 (rack 0), cette action entraîne une reprise à chaud.

Cas particulier du processeur PCI 57

Dans ce cas, le processeur n'est pas physiquement présent sur le rack 0. Un appui sur le bouton RAZ du module d'alimentation du rack n'entraîne pas une reprise à chaud. Cependant les modules présents sur le rack font l'objet d'une réinitialisation.

Chapitre 37

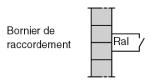
Alimentations TSX PSY ...: fonctions auxiliaires

Objet de ce chapitre

Ce chapitre traite des fonctions auxiliaires sur les alimentations TSX PSY.....

Contenu de ce chapitre

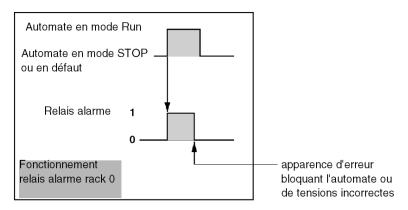
Ce chapitre contient les sujets suivants :


Sujet	Page
Relais d'alarme sur modules d'alimentation TSX PSY	288
Caractéristiques du contact relais alarme	290

Relais d'alarme sur modules d'alimentation TSX PSY

Introduction

Le relais d'alarme situé dans chaque module d'alimentation possède un contact libre de potentiel accessible sur le bornier de raccordement à vis du module.


Illustration:

Relais d'alarme du module situé sur le rack supportant le processeur (rack 0)

En fonctionnement normal, avec l'automate en mode **RUN**, le relais d'alarme est activé et son contact est fermé (état 1). Sur tout arrêt, même partiel, de l'application, lorsqu'un défaut "bloquant" survient, en présence de tensions de sortie incorrectes ou en cas de disparition de la tension secteur, le relais passe en position de repli et son contact associé s'ouvre (état 0).

Illustration:

AATTENTION

COMPORTEMENT INATTENDU DE L'EQUIPEMENT

N'utilisez pas le relais d'alarme du module d'alimentation lorsque le processeur Atrium est intégré dans un PC (il ne fonctionne pas dans cette configuration).

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

A ATTENTION

COMPORTEMENT INATTENDU DE L'APPLICATION

En mode pas à pas ou lors de l'utilisation d'un point d'arrêt, vérifiez que le comportement du relais d'alarme n'a pas d'incidence sur l'état des sorties. Réglez le bit %S9 sur 1 pour forcer les sorties à passer en mode de repli.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Si cette fonction est absolument indispensable au bon fonctionnement de l'installation, le relais d'alarme du module d'alimentation peut être remplacé par l'utilisation d'une sortie à relais d'alarme situé sur le bus X ou sur le bus FIPIO. Pour cela, cette sortie devra être :

- une sortie à relais.
- configurée avec un repli à 0 (configuration par défaut),
- initialisée à l'état 1 en début d'exécution du programme d'application.

Ainsi configurée, la sortie à relais se comporte de la même manière que le relais d'alarme commandé par un processeur TSX P57/TSX H57.

Relais d'alarme des modules situés sur les autres racks (1 à 7)

Dès la mise sous tension du module et si les tensions de sortie sont correctes, le relais d'alarme est actionné et son contact fermé (état 1).

Sur disparition de la tension secteur ou si les tensions de sortie sont incorrectes, le relais passe en position de repli (état 0).

Ces modes de fonctionnement permettent d'utiliser ces contacts dans des circuits externes à sécurité positive, comme par exemple le contrôle automatique des alimentations des préactionneurs ou la transmission d'informations.

Caractéristiques du contact relais alarme

Caractéristiques

Contact relais alarme.

Tension limite d'emploi	Courant alternatif			19264 V		
	Courant continu (possible jusqu'à 34V pendant 1h par 24h) 1030 V					
Courant thermique	3 A	3 A				
Charge courant alternatif	Résistive régime	Tension	~24 V	~48 V	~110 V	~220 V
	AC 12	Puissance	50 VA (5)	50 VA (6) 110 VA (4)	110 VA (6) 220 VA (4)	220 VA (6)
	Inductive régime	Tension	~24 V	~48 V	~110 V	~220 V
	AC14 et AC15	Puissance	24 VA (4)	10 VA (10) 24 VA (8)	10 VA (11) 50 VA (7) 110 VA (2)	10 VA (11) 50 VA (9) 110 VA (6) 220 VA (1)
Charge courant continu	Résistive régime DC12	Tension	24 V (continu)			
		Puissance	24 W (6) 40 W (3)	` '		
	Charge inductive	Tension	24 V (conti	24 V (continu)		
	DC13 (L/R=60 ms)	Puissance	10 W (8) 24 W (6)			
	Charge mini commi	utable	1 mA/5 V			
Temps de réponse	Enclenchement	≤ 10 ms				
	Déclenchement	≤ 10 ms				
Type de contact	A fermeture					

Protections incorporées	Contre les surcharges et courts- circuits		Aucune, montage obligatoire d'un fusible à fusion rapide
	Contre les surtensions inductives en ~		Aucune, installation obligatoire – en parallèle aux bornes de chaque pré-actionneur – d'un circuit RC ou écrêteur MOV (ZNO), en fonction de la tension utilisée
	Contre les surtensions inductives en continu		Aucune, montage obligatoire aux bornes de chaque pré-actionneur d'une diode de décharge
Isolement (tension d'essai)	Contact/masse		50/60 Hz-1 mn (sur module TSX PSY 610/3610/5520)
		3 000 V eff50/60Hz-1mn (sur module TSX PSY 8500)	
	Résistance d'isolement	> 10 M Ω en dessous de 500 VCC	

- (1) 0.1×7^6 manœuvres (7) 1.5×10^6 manœuvres
- (2) 0,15 x 8⁶ manœuvres (8) 2 x 10⁶ manœuvres
- (3) 0.3×9^6 manœuvres (9) 3×10^6 manœuvres
- (4) 0.5×10^6 manœuvres (10) 5×10^6 manœuvres
- (5) 0,7 x 10⁶ manœuvres (11) 10 x 10⁶ manœuvres
- (6) 1 x 10⁶ manœuvres

Alimentations TSX PSY : bilan de consommation et de puissance

Objectif de ce chapitre

Ce chapitre a pour objectif de faire un bilan de consommation et de puissance pour le choix du module d'alimentation.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Bilan de consommation pour choix du module d'alimentation	294
Bilan de consommation	296
Bilan de consommation	297
Bilan de consommation	298
Bilan de consommation	299
Bilan de consommation	300
Bilan de puissance	301

Bilan de consommation pour choix du module d'alimentation

Généralités

La puissance nécessaire à l'alimentation d'un rack dépend du type de modules installé sur ce même rack. De ce fait, il sera nécessaire de faire un bilan de consommation afin de définir le module d'alimentation à monter sur le rack (module au format standard ou double).

Rappel des puissances disponibles sur chaque module d'alimentation

Tableau récapitulatif :

	Format standard		Double format			
	TSX PSY 1610	TSX PSY 2600	TSX PSY 3610	TSX PSY 5520	TSX PSY 5500	TSX PSY 8500
Puissance utile totale (toutes sorties confondues)(1) (4 bis)	30 W (30 W)	26 W (30 W)	50 W (55) W	50 W (55 W)	50 W (55 W)	77 W à 60 _C 85 W à 55 _C, 100 W avec TSX FAN
Puissance disponible sur sortie 5 VCC (1 bis)	15 W	25 W	35 W	35 W	35 W	75 W
Puissance disponible sur sortie 24 VR (2 bis)	15 W	15 W	19 W	19 W	19 W	non fourni
Puissance disponible sur sortie 24 VCC (alimentation capteurs sur bornier face avant) (3 bis)	non fourni	12 W	non fourni	non fourni	19 W	38 W

(1) Les valeurs entre crochets correspondent aux valeurs maximum pouvant être prises en charge pendant 1 minute toutes les 10 minutes. Ces valeurs ne sont pas à prendre en compte pour le calcul du bilan de consommation.

A AVERTISSEMENT

COMPORTEMENT INATTENDU DE L'EQUIPEMENT

Lors de la sélection du module d'alimentation, vérifiez que la puissance disponible sur chaque sortie (5 VCC, 24 VR et 24 VCC) et la puissance totale sont supérieures aux besoins de consommation calculés au moyen de la méthode du bilan de puissance.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

NOTE: le module d'alimentation TSX PSY 8500 ne possède pas de sortie 24 VR pour l'alimentation de certains modules par 24 VCC. Les dispositions et travaux préparatifs suivants doivent être prises ou effectués pour tous les racks disposant de ce type d'alimentation :

- les modules de sortie à relais TSX DSY 08R. / 16R. et le module de pesage TSX ISP Y 100 ne pourront pas être installés sur ces racks,
- les modules de sorties analogiques TSX ASY 800 devront être configurés en alimentation externe (3 modules maximum par rack).

Bilan de puissance

Tableau du bilan de puissance :

Nume	Numéro de rack :					
1	Puissance nécessaire sur sortie 5 VCC :	x10 ⁻³ Ax5V	=W			
2	Puissance nécessaire sur sortie 24 VR :	x10 ⁻³ Ax24V	=W			
3	Puissance nécessaire sur sortie 24 VC :	x10 ⁻³ Ax24V	=W			
4	Puissance totale nécessaire :		=W			

Tableau 1

Ce tableau donne la consommation typique de chaque module et permet de calculer en fonction des modules installés la consommation par rack et sur chaque sortie :

Type de module	Références	Consommatic	on en mA (valeu	r typique) (1)
		Sur 5 V cc	Sur 24 VR	Sur 24 VS (2)
Processeur + Carte mémoire PCMCIA	TSX P57 0244/104/204	850		
	TSX P57 154/254	930		
	TSX P57 1634/2634	1 650		
	TSX P57 304	1 100		
	TSX P57 354	1 180		
	TSX P57 3634	1 900		
	TSX P57 454	1 680		
	TSX P57 4634	1 880		
	TSX P57 554	1 680		
	TSX P57 5634	1 880		
	TSX P57 6634	1 880		
	TSX H57 24M	1 880		
	TSX H57 44M	1 880		
Entrées TOR	TSX DEY 08D2	55		80
	TSX DEY 16A2	80		
	TSX DEY 16A3	80		
	TSX DEY 16A4	80		
	TSX DEY 16A5	80		
	TSX DEY 16D2	80		135
	TSX DEY 16D3	80		135
	TSX DEY 16FK	250		75
	TSX DEY 32D2K	135		160
	TSX DEY 32D3K	140		275
	TSX DEY 64D2K	155		315

⁽¹⁾ La consommation des modules est donnée pour 100% des entrées ou sorties à l'état 1.

⁽²⁾ Si utilisation d'une alimentation capteur 24V (continu) externe, la consommation sur cette sortie n'est pas à prendre en compte pour le choix de l'alimentation du rack.

Tableau 2

Ce tableau donne la consommation typique de chaque module et permet de calculer en fonction des modules installés la consommation par rack et sur chaque sortie:

Type de module	Références	Consommatic	Consommation en mA (valeur typique) (1)		
		Sur 5VCC	Sur 24 VR	Sur 24VC (2)	
Sorties TOR	TSX DSY 08R4D	55	80		
	TSX DSY 08R5	55	70		
	TSX DSY 08R5A	55	80		
	TSX DSY 08S5	125			
	TSX DSY 08T2	55			
	TSX DEY 08T22	55			
	TSX DEY 08T31	55			
	TSX DEY 16R5	80	135		
	TSX DEY 16S4	220			
	TSX DEY 16S5	220			
	TSX DEY 16T2	80			
	TSX DEY 16T3	80			
	TSX DSY 32T2K	140			
	TSX DSY 64T2K	155			
Entrées/Sorties TOR	TSX DMY 28FK	300		75	
	TSX DMY 28RFK	300		75	
Sécurité arrêt d'urgence	TSX PAY 262	150			
	TSX PAY 282	150			
Déport X-Bus	TSX REY 200	500			

⁽¹⁾ La consommation des modules est donnée pour 100% des entrées ou sorties à l'état 1.

⁽²⁾ Si utilisation d'une alimentation capteur 24V (continu) externe, la consommation sur cette sortie n'est pas à prendre en compte pour le choix de l'alimentation du rack.

Tableau 3

Ce tableau donne la consommation typique de chaque module et permet de calculer en fonction des modules installés la consommation par rack et sur chaque sortie:

Type de module	Références	Consommatic	Consommation en mA (valeur typique) (1)			
		Sur 5VCC	Sur 24 VR	Sur 24VC (2)		
Analogique	TSX AEY 414	660				
	TSX AEY 420	500				
	TSX AEY 800	270				
	TSX AEY 810	475				
	TSX AEY 1600	270				
	TSX AEY 1614	300				
	TSX AEY 410	990				
	TSX AEY 800 (3)	200	300			
Comptage	TSX CTY 2A	280		30		
	TSX CTY 2C	850		15		
	TSX CTY 4A	330		36		
Commande d'axes	TSX CAY 21	1100		15		
	TSX CAY 22	1100		15		
	TSX CAY 41	1500		30		
	TSX CAY 42	1500		30		
	TSX CAY 33	1500		30		
Commande pas à pas	TSX CFY 11	510		50		
	TSX CFY 21	650		100		
Pesage	TSX ISPY 100 (3)	150	145			

- (1) La consommation des modules est donnée pour 100% des entrées ou sorties à l'état 1.
- (2) Si utilisation d'une alimentation capteur 24V (continu) externe, la consommation sur cette sortie n'est pas à prendre en compte pour le choix de l'alimentation du rack.
- (3)Si utilisation d'une alimentation 24VR (continu) externe, la consomation de courant sur le 24 VR interne n'est pas à prendre en compte pour le choix de l'alimentation du rack.

Tableau 4

Ce tableau donne la consommation typique de chaque module et permet de calculer en fonction des modules installés la consommation par rack et sur chaque sortie:

Type de module	Références	Consommation en mA (valeur typique) (1)		
		Sur 5VCC	Sur 24 VR	Sur 24VC (2)
Communication	TSX ETY 110 (3) (4)	800		
		1200		
	TSX ETY 120 (3) (4)	800		
		1200		
	TSX ETY 210 (3) (4)	800		
		1200		
	TSX IBY 100	500		
	TSX PBY 100	400		
	TSX SAY 100	110		
	TSX SCY 21601	350		
	TSX SCP 111	140		
	TSX SCP 112	120		
	TSX SCP 114	150		
	TSX FPP 10	330		
	TSX FPP 20	330		
	TSX JNP 112	120		
	TSX JNP 114	150		
	TSX MBP 100	220		
	TSX MDM 10	195		

- (1) La consommation des modules est donnée pour 100% des entrées ou sorties à l'état 1,
- (2) si utilisation d'une alimentation capteur 24V (continu) externe, la consommation sur cette sortie n'est pas à prendre en compte pour le choix de l'alimentation du rack,
- (3) sans téléalimentation (RJ45),
- (4) avec téléalimentation (AUI).

Tableau 5

Ce tableau donne la consommation typique de chaque module et permet de calculer en fonction des modules installés la consommation par rack et sur chaque sortie:

Type de module	Références	Consommation en mA (valeur typique) (1)		ypique) (1)
		Sur 5VCC	Sur 24 VR	Sur 24VC (2)
Autres (équipements non auto- alimentés et connectables sur la prise terminal)	TSX P ACC01	150		
	T FTX 117	310		

- (1) La consommation des modules est donnée pour 100% des entrées ou sorties à l'état 1,
- (2) si utilisation d'une alimentation capteur 24V (continu) externe, la consommation sur cette sortie n'est pas à prendre en compte pour le choix de l'alimentation du rack.

35010525 12/2018

Bilan de puissance

Général

Le bilan de puissance d'un rack sera établi en fonction du bilan de consommation effectué à partir des tableaux définis dans le bilan de consommation (voir page 294).

Tableau de calcul de puissance pour un rack :

Nume	Numéro du rack :				
1	Puissance nécessaire sur sortie 5 VCC :	(1)x 10 ⁻³ Ax5 V	=W		
2	Puissance nécessaire sur sortie 24 VR :	(1)x 10 ⁻³ Ax5 V	=W		
3	Puissance nécessaire sur sortie 24 VCC :	(1)x10 ⁻³ Ax5 V	=W		
4	Puissance totale nécessaire :		=W		

- (1) Cet opérande correspond à la somme des courants consommés par chaque module du rack sur la sortie 5 VCC.
- (2) Cet opérande correspond à la somme des courants consommés par chaque module du rack sur la sortie 24 VR.
- (3) Cet opérande correspond à la somme des courants consommés par des capteurs sur la sortie 24 VCC.

A AVERTISSEMENT

FONCTIONNEMENT INATTENDU DE L'EQUIPEMENT

Lors de la sélection du module d'alimentation, vérifiez que la puissance disponible sur chaque sortie (5 VCC, 24 VR et 24 VCC) et la puissance totale sont supérieures aux besoins de consommation calculés au moyen de la méthode du bilan de puissance.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

Rappel des puissances disponibles (sur chaque sortie totale)

Tableau de puissance des alimentations :

	Sur sortie 5 VCC	Sur sortie 24 VR	Sur sortie 24 VCC	Total
TSX PSY 1610	15 W	15 W	-	30 W
TSX PSY 2600	25 W	15 W	12 W	26 W
TSX PSY 3610	35 W	19 W	-	50 W
TSX PSY 5520	35 W	19 W	-	50 W
TSX PSY 5500	35 W	19 W	19 W	50 W
TSX PSY 8500	75 W	-	38 W	77/85/100 W (1)

^{(1) 77} W à 60 °C, 85 W à 55 °C, 100 W à 55 °C si le rack est équipé d'un module de ventilation.

Module d'alimentation TSX PSY 2600

Caractéristiques du module alimentation TSX PSY 2600

Caractéristiques

Le module TSX PSY 2600 est un module d'alimentation simple format à courant alternatif.

Référence	TSX PSY 2600		
Primaire	Tension nominale (V) ~		100240
	Tensions limites (V) ~		85264
	Fréquence nominales/limites		50-60/47-63Hz
	Puissance apparente		50 VA
	Courant nominal absorbé : leff	≤ 0,5 A à 100 V ≤ 0,3 A à 240 V	
	Mise sous tension initiale par 25°C (1)	l appel	≤ 37 A à 100 V ≤ 75 A à 240 V
		l ² t à l'enclenchement	0,63A ² s à 100V 2,6A ² s à 240V
		It à l'enclenchement	0,034 As à 100V 0,067 As à 240V
	Durée micro-coupures acceptées		≤10 ms
	Protection intégrée sur phase par fusible interne et i		non accessible

Référence	TSX PSY 2600			
Secondaire	Puissance utile totale		26 W	
	Sortie 5VCC	Tension nominale	5,1 V	
		Courant nominal	5 A	
		Puissance (typique)	25W	
	Sortie 24VR (24V relais) (2)	Tension nominale	24VCC	
		Courant nominal	0,6 A	
		Puissance (typique)	15W	
	Sortie 24VC (24V capteur)	Tension nominale	24VCC	
		Courant nominal	0,5 A	
		Puissance (typique)	12W	
	Protection des sorties contre surcharges/courts-circuits/surtensions			
Dissipation de l	puissance		10W	
Fonctions auxil	iaires			
Relais alarme	oui (1 contact à fermeture, libre de pote	ntiel sur bornier		
Visualisation	oui, par voyant en face avant			
Pile de sauvegarde	oui (surveillance état par voyant en face avant du module)			
Conformité aux normes	IEC 1131-2			
Isolement	Tenue diélectrique (50/60Hz-1mn)	Primaire/secondaire	2000 Veff	
		Primaire/terre	2000 Veff	
		Sortie 24VCC/terre	-	
	Résistance d'isolement	Primaire/secondaire	≥ 100 MΩ	
		Primaire/terre	≥ 100 MΩ	

- (1) ces valeurs sont à prendre en compte lors du démarrage de plusieurs équipements simultanément ou pour le dimensionnement des organes de protection.
- (2) sortie 24V continu destinée à l'alimentation des relais des modules "sorties relais".

Module d'alimentation TSX PSY 5500

Caractéristiques du module alimentation TSX PSY 5500

Caractéristiques

Le module TSX PSY 5500 est un module alimentation double format à courant alternatif.

Référence			
Primaire	Tension nominale (V) ~		100120/200240
	Tensions limites (V) ~		85140/190264
	Fréquence nominales/limites		50-60/47-63Hz
	Puissance apparente		150 VA
	Courant nominal absorbé : leff	≤ 1,7 A à 100 V ≤ 0,5 A à 240 V	
	Mise sous tension initiale par 25°C (1)	l appel	≤ 38 A à 100 V ≤ 38 A à 240 V
		l ² t à l'enclenchement	4A ² s à 100V 2A ² s à 240V
		It à l'enclenchement	0,11 As à 100V 0,11 As à 240V
	Durée micro-coupures acceptées		≤10 ms
	Protection intégrée sur phase par fusible interne et n		on accessible

Référence				
Secondaire	Puissance utile totale		50W	
	Sortie 5VCC	Tension nominale	5,1 V	
		Courant nominal	7 A	
		Puissance (typique)	35W	
	Sortie 24VR (24V relais) (2)	Tension nominale	24VCC	
		Courant nominal	0,8 A	
		Puissance (typique)	19W	
	Sortie 24VC (24V capteur)	Tension nominale	24VCC	
		Courant nominal	0,8 A	
		Puissance (typique)	19W	
	Protection des sorties contre surcharges/courts-circuits/surtensions			
Dissipation de l	puissance		20W	
Fonctions auxil	iaires			
Relais alarme	oui (1 contact à fermeture, libre de pote	entiel sur bornier		
Visualisation	oui, par voyant en face avant			
Pile de sauvegarde	oui (surveillance état par voyant en face avant du module)			
Conformité aux normes	IEC 1131-2			
Isolement	Tenue diélectrique (50/60Hz-1mn)	Primaire/secondaire	2000 Veff	
		Primaire/terre	2000 Veff	
		Sortie 24VCC/terre	-	
	Résistance d'isolement	Primaire/secondaire	≥ 100 MΩ	
		Primaire/terre	≥ 100 MΩ	

- (1) ces valeurs sont à prendre en compte lors du démarrage de plusieurs équipements simultanément ou pour le dimensionnement des organes de protection.
- (2) sortie 24V continu destinée à l'alimentation des relais des modules "sorties relais".

35010525 12/2018

Module d'alimentation TSX PSY 8500

Caractéristiques du module alimentation TSX PSY 8500

Caractéristiques

Le module TSX PSY 8500 est un module alimentation double format à courant alternatif.

Référence			
Primaire	Tension nominale (V) ~		100120/200240
	Tensions limites (V) ~		85140/170264
	Fréquence nominales/limites		50-60/47-63Hz
	Puissance apparente	150 VA	
	Courant nominal absorbé : leff		≤ 1,4 A à 100 V ≤ 0,5 A à 240 V
	Mise sous tension initiale par 25°C (1)	l appel	≤ 30 A à 100 V ≤ 60 A à 240 V
		l ² t à l'enclenchement	15A ² s à 100V 8A ² s à 240V
		It à l'enclenchement	0,15 As à 100V 0,15 As à 240V
	Durée micro-coupures acceptées		≤10 ms
	Protection intégrée sur phase	par fusible interne et n	on accessible

Référence			
Secondaire	Puissance utile totale		77/85/100W (2)
	Sortie 5VCC	Tension nominale	5,1 V
		Courant nominal	15 A
		Puissance (typique)	75W
	Sortie 24VR (24V relais) (3)	Tension nominale	non fourni
		Courant nominal	non fourni
		Puissance (typique)	non fourni
	Sortie 24VC (24V capteur)	Tension nominale	24VCC
		Courant nominal	1,6 A
		Puissance (typique)	38W
	Protection des sorties contre	surcharges/courts-circu	uits/surtensions
Dissipation de p	puissance		20W
Fonctions auxil	iaires		
Relais alarme	oui (1 contact à fermeture, libre de pote	entiel sur bornier	
Visualisation	oui, par voyant en face avant		
Pile de sauvegarde	oui (surveillance état par voyant en face avant du module)		
Conformité aux normes	IEC 1131-2		
Isolement	Tenue diélectrique (50/60Hz-1mn)	Primaire/secondaire	3000 Veff
		Primaire/terre	3000 Veff
		Sortie 24VCC/terre	500 Veff
	Résistance d'isolement	Primaire/secondaire	≥ 100 MΩ
		Primaire/terre	≥ 100 MΩ

- (1) Ces valeurs sont à prendre en compte lors du démarrage de plusieurs équipements simultanément ou pour le dimensionnement des organes de protection.
- (2) 77 W par 60°C, 85 W par 55°C, 100 W par 55°C, si le rack est équipé de modules de ventilation.
- (3) sortie 24V continu destinée à l'alimentation des relais des modules "sorties relais".

Module d'alimentation TSX PSY 1610

Caractéristiques du module alimentation TSX PSY 1610

Caractéristiques

Le module TSX PSY 1610 est un module alimentation simple format non isolé à courant continu.

Référence	TSX PSY 1610		
Principal	Tension nominales (non isolée)		24 VCC
	Tensions limites (ondulation incluse) (1) (possible jusqu'à 34 V pendant 1 h par 24 h)		19.2 à 30 VCC
	Courant nominal d'entrée : I eff à 24 V	CC	≤1.5 A
	Mise sous tension initiale à 25°C (2)	l appel	≤ 100 A à 24 VCC
	l ² t à l'enclenchement		6 A ² s
		It à l'enclenchement	0.1 As
	Durée micro-coupures acceptées		≤1 ms
	Protection intégrée sur entrée	par fusible 5x20 tempo	orisé, 3,5A

35010525 12/2018

Référence	TSX PSY 1610			
Secondaire	Puissance utile totale (typique)		30W	
	Sortie 5VCC	Tension nominale	5 V	
		Courant nominal	3A	
		Puissance (typique)	15W	
	Sortie 24VR (24VCC relais) (3)	Tension nominale	U réseau - 0,6V	
		Courant nominal	0.6 A	
		Puissance (typique)	15W	
	Protection intégrées sur les sorties	Surcharges	oui	
	contre (4)	Courts-circuits	oui	
		Surtensions	oui	
Dissipation de puiss	ance		10W	
Fonctions auxiliaires				
Relais alarme	oui (1 contact à fermeture, libre de potentiel sur bornier			
Affichage	oui, par voyant en face avant			
Pile de sauvegarde oui (surveillance état par voyant en face avant du module)				
Conformité aux norn	nes		IEC1131-2	

- (1) Dans le cas de l'alimentation de modules à "sorties relais", la plage limite est réduite à 21,6 à 26,4 V.
- (2) ces valeurs sont à prendre en compte lors du démarrage de plusieurs équipements simultanément et pour le dimensionnement des organes de protection.
- (3) Sortie 24 VCC pour alimenter les relais des modules à "sorties relais".
- (4) La sortie tension 24VR, non accessible par l'utilisateur est protégée par un fusible situé sous le module (5x20, 4A, type Médium).

35010525 12/2018

Module d'alimentation TSX PSY 3610

Caractéristiques du module alimentation TSX PSY 3610

Caractéristiques

Le module TSX PSY 3610 est un module alimentation double format non isolé à courant continu.

Référence			
Principal	Tension nominale		24 VCC
	Tensions limites (ondulation incluse) (34 V pendant 1 h par 24 h)	19.2 à 30 VCC	
	Courant nominal d'entrée : I eff à 24 \	≤2,7 A	
	Mise sous tension initiale à 25°C (2)	l appel	≤ 150 A à 24 VCC
		l ² t à l'enclenchement	26 A ² s
		It à l'enclenchement	0.3 As
	Durée micro-coupures acceptées		≤1 ms
	Protection intégrée sur entrée	non	

Référence					
Secondaire	Puissance utile totale (typique)		50W		
	Sortie 5VCC	Tension nominale	5.1 V		
		Courant nominal	7 A		
		Puissance (typique)	35W		
	Sortie 24VR (24V relais) (3)	Tension nominale	U réseau - 0,6V		
		Courant nominal	0.8 A		
		Puissance (typique)	19W		
	Protection des sorties intégrée	Surcharges	oui		
	contre (4)	Courts-circuits	oui		
	(4)	Surtensions	oui		
Dissipation de puissand	ee		15W		
Fonctions auxiliaires	Fonctions auxiliaires				
Relais alarme	oui (1 contact à fermeture, libre de potentiel sur bornier				
Affichage	oui, par voyant en face avant				
Pile de sauvegarde	Pile de sauvegarde oui (surveillance état par voyant en face avant du module)				
Conformité aux normes			IEC1131-2		

- (1) Dans le cas d'alimentation de modules à "sorties relais", la plage limite est réduite à 21.6...26.4V.
- (2) ces valeurs sont à prendre en compte lors du démarrage de plusieurs équipements simultanément et pour le dimensionnement des organes de protection.
- (3) Sortie 24V continu destinée à l'alimentation des relais des modules "sorties relais".
- (4) La sortie tension 24VR, non accessible par l'utilisateur est protégée par un fusible situé sous le module (5x20, 4A, type Médium).

35010525 12/2018

Module d'alimentation TSX PSY 5520

Caractéristiques du module alimentation TSX PSY 5520

Caractéristiques

Le module TSX PSY 5520 est un module alimentation isolé double format à courant continu.

Référence			
Principal	Tension nominale		240.48 VCC
	Tensions limites (ondulation incluse)		19.2 à 60 VCC
	courant nominal d'entrée : leff		≤ 3 A à 24 VCC ≤ 1,5 A à 48 VCC
	Mise sous tension initiale à 25°C (1)	I appel	≤ 15 A à 24 VCC ≤ 15 A à 48 VCC
		l ² t à l'enclenchement	2,2 A ² s à 24 VCC 1,8 A ² s à 48 VCC
		It à l'enclenchement	0,25 As à 24 VCC 0,15 As à 48 VCC
	Durée micro-coupures acceptées		≤1 ms
	Protection intégrée sur entrée +	par fusible interne au mod	dule et non accessible
Secondaire	Puissance utile totale (typique)		50W
	Sortie 5VCC	Tension nominale	5.1 V
		Courant nominal	7 A
		Puissance (typique)	35W
	Sortie 24 VR (relais 24 VCC) (2)	Tension nominale	24 V
		Courant nominal	0.8 A
		Puissance (typique)	19W
	Protection des sorties intégrée	Surcharges	oui
	contre	Courts-circuits	oui
		Surtensions	oui

Référence				
Dissipation de	puissance		20W	
Fonctions auxil	liaires			
Relais alarme	oui (1 contact à fermeture, libre de po	otentiel sur bornier		
Affichage	oui, par voyant en face avant			
Pile de sauvegarde	oui (surveillance état par voyant en face avant du module)			
Conformité aux	c normes		IEC1131-2	
Isolation	Tenue diélectrique	primaire/secondaire primaire/terre	2000 Veff-50/60Hz-1mn 2000 Veff-50/60Hz-1mn	
	Résistance d'isolement	primaire/secondaire primaire/terre	≥ 10 MΩ ≥ 10 MΩ	

(1) ces valeurs sont à prendre en compte lors du démarrage de plusieurs équipements simultanément et pour le dimensionnement des organes de protection.

(2) Sortie 24 VCC pour alimenter les relais des modules à "sorties relais".

Partie V

Alimentations process

Objet de cette partie

Cette partie a pour objectif de décrire les alimentations Process et leur mise en œuvre.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	
45	Alimentations Process : présentation	317
46	Alimentations Process : installation	329
47	Alimentations process : raccordements	339
48	Caractéristiques des alimentations Process	347

35010525 12/2018

Alimentations Process : présentation

Objet de ce chapitre

Ce chapitre a pour objectif de vous présenter les alimentations Process.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

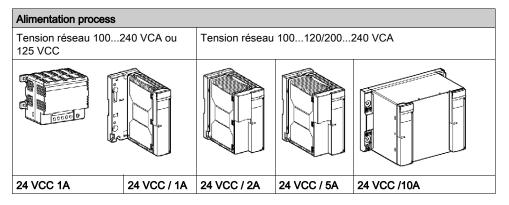
Sujet	Page
Présentation générale des alimentations process	318
Description physique du bornier TBX SUP 10	319
Description physique du module d'alimentation TSX SUP 1011	320
Description physique des modules d'alimentation TSX 1021/1051	321
Description du module d'alimentation TSX SUP 1101	322
Description physique de la platine support	323
Catalogue des alimentations process 24 VCC	324
Alimentations Process : fonctions auxilliaires	

Présentation générale des alimentations process

Généralités

Une large gamme de blocs et modules d'alimentation est proposée afin de s'adapter au mieux aux besoins des utilisateurs.

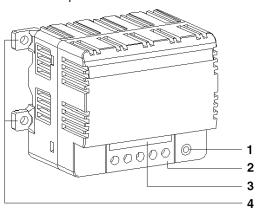
Il s'agit de blocs et modules d'alimentation process TBX SUP 10 et TSX SUP 1..1, destinés à alimenter en 24 VCC la périphérie d'un système d'automatisme, piloté par des automates (Micro et Premium). Cette périphérie étant constituée des capteurs, pré-actionneurs, codeurs, terminaux de dialogue, régulateurs, voyants, bouton-poussoirs, vérins pneumatiques, etc. Cette tension d'alimentation 24 V peut être fournie à partir d'un réseau à courant alternatif 100/240 V, 50/60 Hz.


Le mode de montage de ces produits a été particulièrement étudié pour répondre aux spécificités d'entraxes et de fixations des automates Micro. Premium et produits TBX.

Tous les produits se montent :

- sur platine Telequick AM1-PA
- sur rail DIN central AM1-DP200/DE200, à l'exception des blocs d'alimentation de forte puissance TSX SUP 1101 et TSX A05

Tableaux de présentation

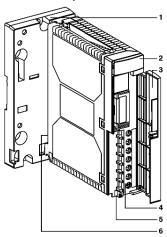

Ce tableau présente les différentes alimentations process :

Description physique du bornier TBX SUP 10

Illustration

Schéma et repères :

Tableau des repères


Le tableau suivant vous présente les descriptions en fonction des repères du schéma ci-dessus :

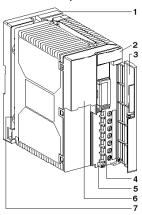
Repères	Description	
1	Voyant indiquant la mise sous tension du module	
2	Bornier à vis pour câblage de tension d'alimentation	
3	Etiquette d'identification pour les borniers	
4	Ailettes pour la fixation du module	

Description physique du module d'alimentation TSX SUP 1011

Illustration

Schéma et repères :

Tableau des repères


Le tableau suivant vous présente les descriptifs en fonction des repères du schéma ci-dessus :

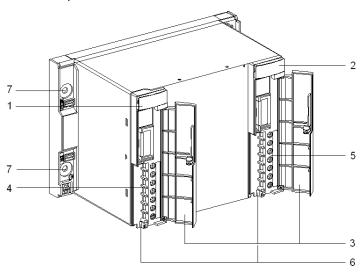
Repères	Descriptif	
1	Platine support permettant la fixation du module d'alimentation directement sur profilé DIN de type AM1-DE200/DP200 ou platine perforée Telequick AM1-PA.	
2	Bloc de visualisation comprenant : un voyant 24 V (vert) : allumé si les tensions internes et de sortie établies sont correctes un voyant LSH (orange) « mode optimisation de puissance » : allumé si l'alimentation fonctionne en mode parallélisation avec optimisation de puissance	
3	Volet assurant la protection du bornier	
4	Bornier à vis pour raccordement : • au réseau d'alimentation alternatif ou continu • de la sortie 24 VCC	
5	Orifice permettant le passage d'un collier de serrage des câbles	
6	Commutateur « NOR/LSH » situé à l'arrière du module pour la commande du dispositif d'optimisation de puissance Position NOR : fonctionnement normal sans optimisation de puissance (position par défaut) Position LSH : fonctionnement avec optimisation de puissance avec alimentations en parallèle	
	Remarque : l'accès au commutateur nécessite le démontage du module de la platine support.	

Description physique des modules d'alimentation TSX 1021/1051

Illustration

Schéma et repères :

Tableau des repères


Le tableau suivant vous présente les descriptifs en fonction des repères du schéma ci-dessus :

Repères	Description
1	Platine support permettant la fixation du module d'alimentation directement sur profilé DIN de type AM1-DE200/DP200 ou platine perforée Telequick AM1-PA.
2	Bloc de visualisation comprenant : un voyant 24 V (vert) : allumé si les tensions internes et de sortie sont correctes un voyant LSH (orange) uniquement sur TSX SUP 1021 « mode optimisation de puissance » : allumé si l'alimentation fonctionne en mode parallélisation avec optimisation de puissance
3	Volet assurant la protection du bornier
4	Bornier à vis pour raccordement : • au réseau d'alimentation alternatif ou continu • de la sortie 24 VCC
5	Orifice permettant le passage d'un collier de serrage des câbles
6	Sélecteur de tension 110/220 V. A la livraison, le sélecteur est positionné sur 220.
7	Commutateur « NOR/LSH » situé à l'arrière du module pour la commande du dispositif d'optimisation de puissance. Ce commutateur est présent uniquement sur le module TSX SUP 1021. Position NOR : fonctionnement normal sans optimisation de puissance (position par défaut) Position LSH : fonctionnement avec optimisation de puissance avec alimentations en parallèle
	Remarque : l'accès au commutateur nécessite le démontage du module de la platine support.

Description du module d'alimentation TSX SUP 1101

Illustration

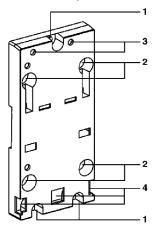
Schéma et repères :

Tableau des repères

Le tableau suivant vous présente les descriptifs en fonction des repères du schéma ci-dessus :

Repères	Descriptif	
1	Bloc de visualisation comprenant un voyant ON (orange) : allumé si l'alimentation est sous tension.	
2	Bloc de visualisation comprenant un voyant 24V (vert) allumé si la tension de sortie 24 VCC est présente et correcte.	
3	Volet assurant la protection des borniers.	
4	Bornier à vis pour raccordement au réseau d'alimentation alternatif.	
5	Bornier à vis pour raccordement de la tension de sortie 24 VCC.	
6	Orifices permettant le passage d'un collier de serrage des câbles.	
7	Quatre trous de fixation permettant le passage des vis M6	

Description physique de la platine support


Présentation

Chaque module d'alimentation TSX SUP 10x1 est livré monté sur une platine support permettant de le fixer : soit sur profilé DIN AM1-DE200 ou AM1-DP200, soit sur une platine perforée Telequick AM1-PA.

Chaque platine support peut recevoir : soit un module TSX SUP 1021, ou TSX SUP 1051, soit un ou deux modules TSX SUP 1011.

Illustration

Schéma et repères :

Tableau des repères

Le tableau suivant vous présente les descriptifs en fonction des repères du schéma ci-dessus :

Repères	Description
1	Trois trous de 5,5 mm de diamètre permettant la fixation de la platine sur panneau ou platine perforée AM1-PA à l'entraxe de 140 mm (entraxe de fixation des automates TSX 37).
2	Quatre trous de 6,5 mm de diamètre permettant la fixation de la platine sur panneau ou platine perforée AM1-PA à l'entraxe de 88,9 mm (entraxe de fixation des automates TSX 57).
3	Deux trous M4 permettant la fixation du ou des modules alimentation TSX SUP 1011/1021/1051.
4	Fenêtres destinées à l'encrage des ergots situés en bas et à l'arrière du module.

Catalogue des alimentations process 24 VCC

Tableau de sélection

Le tableau suivant indique les principales caractéristiques des alimentations process 24 VCC :

Références	TBX SUP 10	TSX SUP 1011
	Tonocole	
Caractéristiques d'entrées Tension nominale	100240 VCA ou 125 VCC	
Valeurs limites	90264 VCA ou 88156 VCC	85264 VCA ou 105150 VCC
Fréquence limite	4763 Hz	4763 Hz ou 360440 Hz
Courant nominal d'entrée	0,4 A	0,4 A
Caractéristiques de sortie Puissance utile	24 W	26 W
Tension de sortie (continue)	24 VCC	
Courant nominal	1 A	1 A
Fonctions auxiliaires Sécurité TBTS (1)	Non	Oui
Parallélisation (2)	Non	Oui avec optimisation de puissance (3)
Redondance (4)	Non	Oui

35010525 12/2018

Tableau de sélection (suite)

Le tableau suivant indique les principales caractéristiques des alimentations process 24 VCC :

Références	TSX SUP 1021	TSX SUP 1051	TSX SUP 1101		
Caractéristiques d'entrées Tension nominale	100120 VCA ou 200	240 VCA			
Valeurs limites	85132 VCA ou 170	.264 VCC			
Fréquence limite	4763 Hz ou 36044	0 Hz			
Courant nominal d'entrée	0,8 A	2,4 A	5 A		
Caractéristiques de sortie Puissance utile	53 W 120 W 240 W				
Tension de sortie (continue)	24 VCC				
Courant nominal	2,2 A 5 A 10 A				
Fonctions auxiliaires Sécurité TBTS (1)	Oui				
Parallélisation (2)	Oui avec optimisation de puissance (3)				
Redondance (4)	Oui Non				

- (1) Caractéristiques de construction selon les normes CEI 950, CEI 1131-2, garantissant la sécurité de l'utilisateur sur la sortie 24V, en terme d'isolation entre primaire et secondaire, de surtension maximum sur les fils de sortie, et de protection par le circuit de terre.
- (2) Possibilité de mettre en parallèle 2 sorties d'alimentations de même type, pour fournir un courant de sortie supérieur au maximum autorisé par une seule alimentation.
- (3) Pour 2 modules fournissant un courant total de 100%, chaque module fournit donc 50% du courant total. Ceci améliore la durée de vie des produits.
- (4) Mise en parallèle de 2 sorties d'alimentations de même type, pour fournir un courant inférieur au maximum autorisé par une seule alimentation mais garantissant une disponibilité de la tension de sortie même si un des deux modules devient défectueux.

Alimentations Process: fonctions auxilliaires

Mode de parallélisation avec optimisation de puissance

Le but de la parallélisation est d'utiliser **deux modules de même référence** pour fournir un courant de sortie supérieur au maximum autorisé par une seule alimentation. Le courant total est la somme des courants fournis par l'ensemble des alimentations.

L'optimisation de puissance est un système interne à l'alimentation destiné à répartir équitablement les courants entre les alimentations en parallèle. Le gain apporté est une augmentation significative de la durée de vie liée à une répartition des puissances consommées.

Spécificités en fonction de l'alimentation :

Alimentations TSX SUP 1011/1021

Le mode optimisation de puissance est obtenu en positionnant le commutateur NOR/LSH situé à l'arrière du module sur la position LSH. Pour accéder à ce commutateur, le support doit être démonté. Quand le voyant orange (LSH) est allumé, le mode est opérationnel.

Le courant fourni avec deux alimentations en parallèle est limité à :

- 2A avec 2 alimentations TSX SUP 1011,
- 4A avec 2 alimentations TSX SUP 1021

L'exploitation de ce mode entraîne une précision plus faible de la tension de sortie : 24V +ou- 5% au lieu de 24 V +ou- 3% en mode normal.

Le déséquilibre des puissances sur le partage des charges peut atteindre 25% maximum.

Il est nécessaire de réaliser un raccordement spécifique (voir page 340) pour ces types de modules.

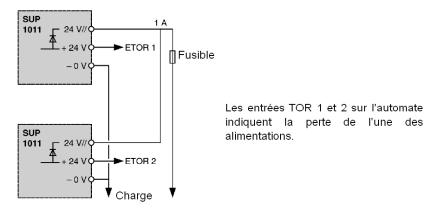
Alimentations TSX SUP 1051/1101

Le mode optimisation de puissance ne nécessite pas de commutateur sur ces alimentations. Il est nécessaire de réaliser un raccordement spécifique pour le module TSX SUP 1051 (voir page 342) et pour le module TSX SUP 1101 (voir page 344). Le courant maximum fourni avec deux alimentations en parallèle est limité à :

- 10A avec 2 alimentations TSX SUP 1051,
- 20A avec 2 alimentations TSX SUP 1101

L'exploitation de ce mode n'entraîne aucune perte de précision sur la tension de sortie. Le déséquilibre des puissances sur le partage des charges peut atteindre 15% maximum.

Redondance sur les alimentations TSX SUP 1011/1021


Principe:

Fourniture des courants nécessaires à l'application, même en cas de défaillance de l'une des alimentations.

Dans ce cas on met en parallèle les deux alimentations en réalisant les raccordements nécessaires (voir *Raccordement d'alimentations TSX SUP 1011/1021, page 340*).

Les alimentations sont configurées en mode optimisation de puissance.

Exemple: fournit 1 A avec 2 alimentations 2 TSX SUP 1011 redondantes.

NOTE: Les alimentations TSX SUP 1051 et 1101 ne sont pas équipées de la diode série, nécessaire pour la fonction redondance.

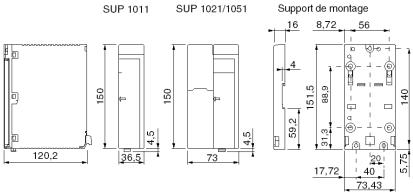
Chapitre 46

Alimentations Process: installation

Objectif de ce chapitre

Ce chapitre traite de l'installation des alimentations Process.

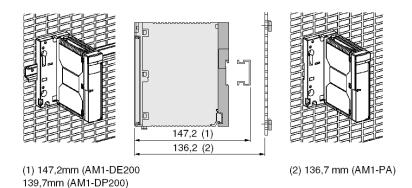
Contenu de ce chapitre


Ce chapitre contient les sujets suivants :

Sujet	Page
Encombrement/montage des alimentations Process	330
Encombrement/montage/raccordements TBX SUP 10	333
Encombrement/montage des alimentations TSX SUP 1101	335
Récapitulatif des modes de fixations	337

Encombrement/montage des alimentations Process

Encombrement


Illustration:

Dimensions en millimètres

Montage sur profilé AM1-DE200 ou AM1-DP200 ou sur platine AM1-PA

Chaque module alimentation est livré, monté sur un support permettant ce type de montage. Illustration :

Montage sur profilé AM1-D....

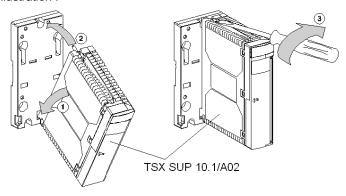
Effectuez les étapes suivantes :

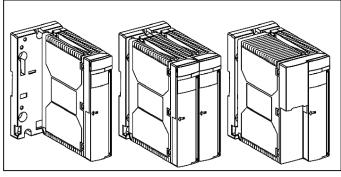
Etapes	Action
1	Vérifiez que le module est monté sur le support.
2	Montez l'ensemble module + support sur le profilé.

Montage sur platine AM1-PA

Effectuez les suivantes :

Etape	Action
1	Démontez le module de son support.
2	Montez le support sur la platine AM1-PA.
3	Montez le module sur support.


Montage du module sur le support


Chaque module alimentation est équipé d'origine d'un support qui permet son montage directement sur profilé DIN. Ce support peut recevoir 1 ou 2 modules alimentations TSX SUP 1011 ou 1 module alimentation TSX SUP 1021/1051.

Effectuez les étapes suivantes :

Etape	Action
1	Ancrez les ergots du module dans les orifices situés à la partie basse du support.
2	Faites pivoter le module pour l'amener en contact avec le support.
3	Vissez la vis située à la partie supérieur du module pour solidariser celui-ci avec le support.

Illustration:

1 module TSX SUP 1011

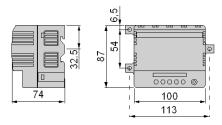
2 modules TSX SUP 1011

1 module TSX SUP 1021/1051

Montage sur rack TSX RKY...

Les modules alimentations TSX SUP 1011/1021/1051 peuvent se monter à n'importe quelle position sur le rack TSX RKY.. à l'exception de la position PS réservée au module alimentation du rack. Dans ce cas, le support n'est pas utilisé et doit être démonté.

Ces modules se montent de façon identique aux modules processeurs.

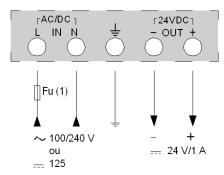

Voir Comment monter les modules processeur, page 98.

NOTE : Le module alimentation du rack TSX PSY... doit être obligatoirement présent en position PS pour alimenter les modules du rack.

Encombrement/montage/raccordements TBX SUP 10

Encombrement/montage

Illustration:



Le bloc alimentation TSX SUP 10 doit être monté sur un plan vertical afin que la convection naturelle de l'air à l'intérieur du bloc soit optimale.

Il peut être monté sur panneau, platine perforée Telequick AM1-PA ou profilé.

Raccordements

Illustration:

(1) Fusible de protection externe sur phase : 1 A temporisé 250 V si alimentation seule.

NOTE : Primaire : si le module est alimenté en courant alternatif 100/240 V il est nécessaire de respectez la phase et le neutre lors du câblage. En revanche si le module est alimenté en 125 VCC, il n'est pas nécessaire de respecter les polarités.

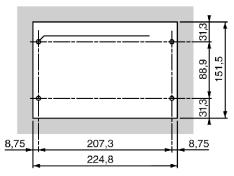
Secondaire : la borne - au potentiel 0 V, doit être reliée à la terre dès la sortie du module d'alimentation.

A DANGER

CHOC ELECTRIQUE

Raccordez le bornier de mise à la terre du module à la terre de protection à l'aide d'un fil vert/jaune.

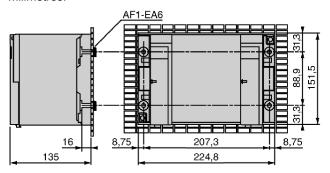
Le non-respect de ces instructions provoquera la mort ou des blessures graves.


Encombrement/montage des alimentations TSX SUP 1101

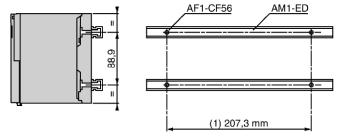
Introduction

Les blocs alimentation TSX SUP 1101 peuvent être montés sur panneau, platine AM1-PA ou rail DIN.

Montage sur panneau


Plan de perçage (dimensions en millimètres):

(1) Le diamètre des trous de fixation doit permettre le passage des vis M6.


Montage sur platine perforée Telequick AM1-PA

Fixer le bloc alimentation par vis M6x25+ rondelles et écrous clips AF1-EA6 (dimensions en milimètres:

Montage sur profilé DIN largeur 35 mm

Fixer le bloc alimentation par 4 vis M6x25+ rondelles et écrous 1/4 de tour coulissant AF1-CF56 (dimensions en millimètres) :

Récapitulatif des modes de fixations

Tableau récapitulatif des modes de fixation

Le tableau suivant dresse un récapitulatif des différents modes de fixations disponibles pour les alimentations Process:

Référence alimentation	TSX SUP 10	TSX SUP 1011	TSX SUP 1021	TSX SUP 1051	TSX SUP 1101
Platine Telequick AM1-PA	X	Х	Х	Х	Х
Rail DIN central AM1-DE200/DP200	X	Х	Х	Х	
Rail DIN AM1-ED Entraxe 140 mm (automate TSX 37)		Х	Х	Х	
Rail DIN AM1-ED Entraxe 88,9 mm (automate TSX 57)		X	X	X	X
Rack TSX 57 TSX RKY		Х	х	х	

Chapitre 47

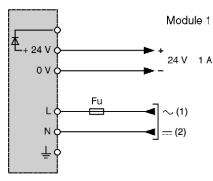
Alimentations process : raccordements

Objectif de ce chapitre

Ce chapitre traite du raccordement des alimentations process.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

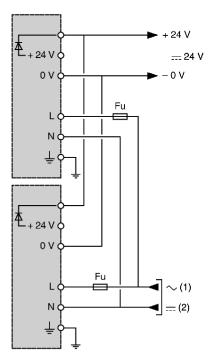

Sujet	Page
Raccordement d'alimentations TSX SUP 1011/1021	340
Raccordement d'alimentations TSX SUP 1051	342
Raccordement d'alimentations TSX SUP 1101	344

Raccordement d'alimentations TSX SUP 1011/1021

Dessin d'illustration

Schéma de câblage :

Raccordement normal



Module 2

Fu = fusible externe en phase (Fu) : 250 V 4 A, temporisation

- (1) 100...240 VCA sur TSX SUP 1011 100...120/200..240 VCA sur TSX SUP 1021
- (2) 125 VCC, seulement sur TSX SUP 1011.

Parallélisation

Règles de raccordement

Primaire: si le module est alimenté avec un courant de 100/240 VCA, il est impératif de respecter les exigences de câblage pour la phase et le neutre lors du raccordement du module. En revanche si le module est alimenté en 125 V continu, il n'est pas nécessaire de respecter les polarités.

 une tension de fonctionnement ≥ 600 VCA avec une section de câble de1,5 mm² (14 AWG) pour le raccordement au réseau,

A DANGER

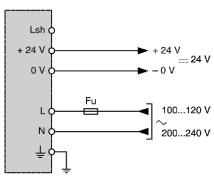
CHOC ELECTRIQUE

Raccordez le bornier de mise à la terre du module à la terre de protection à l'aide d'un fil vert/jaune.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

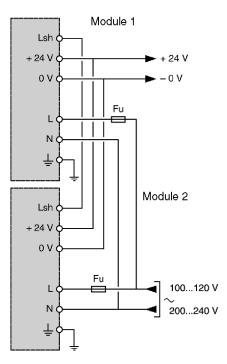
La borne d'alimentation est protégée par un volet qui permet l'accès aux bornes de câblage. La sortie des fils s'effectue verticalement vers le bas. Ceux-ci peuvent être maintenus par un collier serre-câble.

Secondaire: pour assurer la conformité aux exigences d'isolement (EN 60950) par une très basse tension isolée de 24 V, on utilise le câblage suivant :


 une tension de fonctionnement ≥ 300 VCA avec une section de câble de2,5 mm² (12 AWG) pour les sorties 24 V et la terre.

Raccordement d'alimentations TSX SUP 1051

Dessin d'illustration


Schéma de câblage :

Raccordement normal

Fu=Fusible de protection externe en phase (Fu) : 250 V 4 A, temporisation

Parallélisation

Règles de raccordement

Primaire : respectez les règles concernant la phase et le neutre lors du câblage.

 une tension de fonctionnement ≥ 600 VCA avec une section de câble de1,5 mm² (14 AWG) pour le raccordement au réseau,

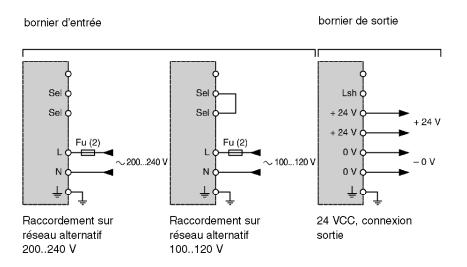
A DANGER

CHOC ELECTRIQUE

Raccordez le bornier de mise à la terre du module à la terre de protection à l'aide d'un fil vert/jaune.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

La borne d'alimentation est protégée par un volet qui permet l'accès aux bornes de câblage. La sortie des fils s'effectue verticalement vers le bas. Ceux-ci peuvent être maintenus par un collier serre-câble.


Secondaire: pour assurer la conformité aux exigences d'isolement (EN 60950) par une très basse tension isolée de 24 V, on utilise le câblage suivant :

 une tension de fonctionnement ≥ 300 VCA avec une section de câble de2,5 mm² (12 AWG) pour les sorties 24 V et la terre.

Raccordement d'alimentations TSX SUP 1101

Illustration 1

Schéma de câblage normal :

Illustration 2

Schéma de câblage parallèle (parallélisation) :

borniers d'entrée borniers de sortie Module 1 Sel Lsh Sel + 24 V + 24 V Fu (2) 0 V Q 0 V C Sel ¢ Lsh d (1)Sel + 24 V 💠 Module 2 + 24 V + 24 V Fu (2) 0 V O 0 V \sim 200...240 V

- (1) Connexion pour une alimentation 100-120 VCA.
- (2) Fusible externe sur phase (Fu): Temporisation 250 V 6,3 A.

Règles de raccordement

Primaire: respectez les règles relatives à la phase et le neutre lors du câblage.

 une tension de fonctionnement ≥ 600 VCA avec une section de câble de1,5 mm² (14 AWG) ou de 2,5 mm² (12 AWG) pour le raccordement au réseau,

A DANGER

CHOC ELECTRIQUE

Raccordez le bornier de mise à la terre du module à la terre de protection à l'aide d'un fil vert/jaune.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

La borne d'alimentation est protégée par un volet qui permet l'accès aux bornes de câblage. La sortie des fils s'effectue verticalement vers le bas. Ceux-ci peuvent être maintenus par un collier serre-câble.

Secondaire: pour assurer la conformité aux exigences d'isolement (EN 60950) par une très basse tension isolée de 24 V, on utilise le câblage suivant :

- une tension de fonctionnement ≥ 300 VCA avec une section de câble de2,5 mm² (12 AWG) pour les sorties 24 V et la terre.
- Câblez les deux bornes 24 V en parallèle, ou répartissez la charge sur les deux sorties 24 V si le courant total devant être fourni dépasse 5 A.

Chapitre 48

Caractéristiques des alimentations Process

Objet de ce chapitre

Ce chapitre vous présente sous forme de tableaux les différentes caractéristiques électriques des alimentations Process.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Caractéristiques électriques des modules d'alimentation process : TBX SUP 10 et TSX SUP 1011	348
Caractéristiques électriques des modules d'alimentation process : TSX SUP 1021/1051/1101	350
Caractéristiques d'environnement	352

Caractéristiques électriques des modules d'alimentation process : TBX SUP 10 et TSX SUP 1011

Tableau des caractéristiques

Le tableau suivant décrit les caractéristiques électriques des alimentations : TBX SUP 10 et TSX SUP 1011 :

Alimentation process		TBX SUP 10 24V/1A	TSX SUP 1011 24V/1A	
			1 100000	
Primaire				
Tension nominale d'entrée		V	alternatif 100240 continu 125	alternatif 100240 continu 125
Tension limite d'entrée		V	alternatif 90264 continu 88156	alternatif 85264 continu 105156
Fréquence réseau		Hz	4763	4763/360440
Courant nominal d'entrée (U=100	V)	Α	0.4	0.4
Courant d'appel maxi (1)	à 100 V	Α	3	37
	à 240 V	Α	30	75
It maxi à l'enclenchement (1)	à 100 V	As	0.03	0.034
	à 240 V	As	0.07	0.067
l ² t maxi à l'enclenchement (1)	à 100 V	A ² s	2	0.63
	à 240 V	A ² s	2	2.6
Facteur de puissance			0.6	0.6
Harmonique (3)			10 % (Phi=0° et 180°)	10 % (Phi=0° et 180°)
Rendement pleine charge		%	>75	>75
Secondaire			1	
Puissance utile (2)		W	24	26(30)
Courant de sortie nominal (2)		Α	1	1.1
Tension de sortie/ précision à 25°	С	V	24+/-5%	24+/-3%
Ondulation résiduelle (crête à crête) Bruit HF max (crête à crête)		mV	240	150
		mV	240	240

Alimentation process		TBX SUP 10 24V/1A	TSX SUP 1011 24V/1A	
			000000	
Durée micro-coupures secteur acce	ptée (3)	ms	≤10 en CA ≤1 en CC	≤10 en CA ≤1 en CC
Protection contre Les courts- circuits et les surcharges			permanente- réarmement automatique	repli à 0 et réarmement automatique sur disparition défaut
	Les surtensions	V	écrétage U>36	écrétage U>36
Mise en parallèle			non	oui avec optimisation de puissance
Mise en série			non	oui
Puissance dissipée			8	18

- (1) Valeurs à la mise sous tension initiale et à 25°C. Ces éléments sont à prendre en compte lors du démarrage pour le dimensionnement des organes de protection.
- (2) Puissance et courant de sortie à une température ambiante de 60°C. Valeur en entrée entre () = sortie dans une armoire ventilée ou dans une plage de température de 0 à 40°C.
- (3) Tension nominale pour une période de répétition de 1Hz.

Caractéristiques électriques des modules d'alimentation process : TSX SUP 1021/1051/1101

Tableau des caractéristiques

Le tableau suivant décrit les caractéristiques électriques des alimentations : TSX SUP 1021/1051/1101 :

Alimentation process			TSX SUP 1021 24V/2A	TSX SUP 1051 24V/5A	TSX SUP 1101 24V/10A	
Primaire						
Tension nominale d'entré	е	V	alternatif 100120/20	0240		
Tension limite d'entrée		V	alternatif 85132/170	264		
Fréquence réseau		Hz	4763/360440	1		
Courant nominal d'entrée	(U=100V)	Α	0.8	2.4	5	
Courant d'appel maxi (1)	à 100 V	Α	<30	51	75	
	à 240 V	Α	<30	51	51	
It maxi à	à 100 V	As	0.06	0.17	0.17	
l'enclenchement (1)	à 240 V	As	0.03	0.17	0.17	
I ² t maxi à	à 100 V	A ² s	4	8.6	8.5	
l'enclenchement (1)	à 240 V	A ² s	4	8.6	8.5	
Facteur de puissance			0.6	0.52	0.5	
Harmonique 3			10 % (φ=0° et 180°)			
Rendement pleine charge)	%	>75	>80		
Secondaire						
Puissance utile (2)		W	53(60)	120	240	
Courant de sortie nominal (2) A		2.2	5	10		
Tension de sortie (0°C-60°c) V		24+/-3% 24+/-1%		24+/-1%		
Ondulation résiduelle (crête à crête) mV		150 200				
Bruit HF max (crête à crête) mV mV		240				
Durée micro-coupures secteur ms acceptée (3)		<=10				

Alimentation process			TSX SUP 1021 24V/2A	TSX SUP 1051 24V/5A	TSX SUP 1101 24V/10A	
Temps de démarrage sur résistive	· charge	s	<1			
Protection contre	Les courts- circuits et les surcharges		repli à 0 et réarmement automatique sur disparition défaut	nt ue sur		
Les V surtensions		V	écrétage U>36	écrétage U>32		
Mise en parallèle		oui avec optimisation de puissance				
Mise en série	Mise en série			oui		
Puissance Dissipée			18	30	60	

- (1) Valeurs à la mise sous tension initiale et à 25°C. Ces éléments sont à prendre en compte lors du démarrage pour le dimensionnement des organes de protection.
- (2) Puissance et courant de sortie à une température ambiante de 60°C. Valeur en entrée entre () = sortie dans une armoire ventilée ou dans une plage de températures de 0 à 40°C.
- (3) Tension nominale pour une période de répétition de 1 Hz.

Caractéristiques d'environnement

Tableau des caractéristiques

Le tableau suivant décrit les caractéristiques électriques des alimentations : TBX SUP 10 et TSX SUP 10x1 :

Modules/blocs d'alimentation process		TBX SUP 10	TBX SUP 1011/1021 TSX SUP 1051/1101
Raccordement sur bornes à vis	2	1 borne par sortie	1011/1021/1051/A02 :1 borne sortie 1101 : bornes/sortie
capacité max. par borne	mm ²	1 x 2,5	2x1,5 avec embout ou 1x2,5
Température : Stockage Fonctionnement	°C °C	-25 à +70 +5 à +55	-25 à +70 0 à +60 (TSX SUP 1011/1021/1051/1101
Humidité relative	%	5-95	
Refroidissement	%	Par convection naturelle	
Sécurité utilisateur		-	TBTS (EN 60950 et IEC1131-2)
Tenue diélectrique Primaire/secondaire Primaire/terre Secondaire/terre	V eff V eff V eff	50/60Hz-1 mm 1500 1500 500	3500 2200 500
Résistance d'isolement Primaire/secondaire Primaire/terre	Méga Ohms Méga Ohms	>=100 >=100	
Courant de fuite		I<=3,5 mA (EN 60950))
Immunités décharges électrostatiques		6 kV par contact/8 KV (conforme à IEC 1000-	
Transitoire électrique rapide		2 kV (mode série et mode commun sur entrée et sortie)	
Influence champ électromagnétique		10 V/m (80MHz à 1GHz)	
Perturbations électromagnétiques rejetées		(conforme FCC 15-A et EN 55022 classe A) Conditions d'essais : U et I nominale, charge résistive, câble: 1 mètre horizontal, 0,8 mètre vertical	
Onde de choc		Entrée : 4kV MC, 2kV (conforme à IEC 1000-	MS Sorties: 2kV MF, 0,5 kV MS -4-5)

Modules/blocs d'alimentation process		TBX SUP 10	TBX SUP 1011/1021 TSX SUP 1051/1101
Vibration (1)		1 mm 3 Hz à 13,2 Hz 1 (conforme à IEC 68-2-	
Degré de protection		IP 20.5	IP 20.5, bornier IP 21.5
MTBF à 40°C Durée de vie à 50°C	Н	100 000	
	Н	30 000 (à tension nominale et à 80 % de la puissance nominale)	

⁽¹⁾ conforme à IEC 68-2-6, essai FC avec module ou bloc montés sur platine ou panneau.

Partie VI

Racks TSX RKY.. standard et extensibles

Objet de cette partie

Cette partie traite des racks TSX RKY.. standard et extensibles.

Contenu de cette partie

Cette partie contient les chapitres suivants :

Chapitre	Titre du chapitre	Page
49	Présentation des racks standards/extensibles TSX RKY	357
50	Racks TSX RKY standard et extensibles : installation/montage	367
51	TSX Racks RKY standard et extensibles : fonctions	375
52	Racks TSX RKY : accessoires	391
53	Module de déport de bus X	405
54	Module de ventilation	423

Chapitre 49

Présentation des racks standards/extensibles TSX RKY...

Objet de ce chapitre

Ce chapitre traite :

- des généralités liées aux racks TSX RKY,
- de la description physique de ces mêmes racks.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	
Racks TSX RKY standard et extensibles	358
Rack standard : description	
Rack extensible : description	

Racks TSX RKY standard et extensibles

Généralités

Les racks TSX RKY constituent l'élément de base des automates Premium.

Ces racks assurent les fonctions suivantes :

• Fonction mécanique :

ils permettent la fixation de l'ensemble des modules d'une station automate (modules d'alimentation, processeurs, entrées/sorties TOR/analogiques, modules métiers). Ils peuvent être fixés dans des armoires, des bâtis de machine ou sur des panneaux.

• Fonction électrique :

un bus, appelé bus X, est intégré sur les racks, qui répartit :

- O les alimentations nécessaires à chaque module d'un même rack
- des signaux de service et des données pour l'ensemble de la station automate dans le cas où celle-ci comporte plusieurs racks

NOTE: Deux familles de racks sont disponibles en différentes modularités (4, 6, 8 et 12 emplacements):

- les racks standards
- les racks extensibles

350 10525 12/2018

Racks standards

Ils permettent de constituer une station automate limitée à un seul rack.

Ce tableau présente les différents racks standards :

Désignation	Dessin d'illustration
TSX RKY 6	Rack 6 emplacements
TSX RKY 8	Rack 8 emplacements
TSX RKY 12	Rack 12 emplacements

Racks extensibles

Ils permettent de constituer une station automate qui peut comporter :

- 8 racks TSX RKY 12 EX maximum
- 16 racks TSX RKY 4EX/6EX/8EX maximum

Ces racks sont répartis sur un bus appelé bus X dont la longueur maximum est limitée à 100 mètres.

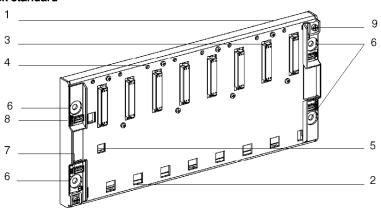
La continuité du bus d'un rack vers un autre rack est assurée par un câble d'extension bus.

Pour les applications exigeant des distances plus élevées, un module d'extension de bus X permet l'extension de deux segments de bus X depuis le rack hébergeant le processeur à une distance maximale de 250 mètres.

Ce tableau vous présente les différents racks extensibles :

Désignation	Dessin d'illustration	
TSX RKY 4EX	Rack 4 emplacements	
TSX RKY 6EX	Rack 6 emplacements	

Désignation	Dessin d'illustration
TSX RKY 8EX	Rack 8 emplacements
TSX RKY 12EX	Rack 12 emplacements


Rack standard: description

Présentation

Ils permettent de constituer une station automate limitée à un seul rack.

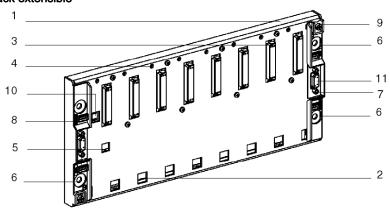
Dessin d'illustration

Rack standard

Description

Le tableau suivant décrit les différents éléments d'un rack standard.

Numéro	Description	
1	Tôle métallique assurant les fonctions de : • support de la carte électronique du bus X et protection contre les IEM et les DES. • support des modules • préserve la rigidité physique du rack.	
2	Fenêtres destinées à l'encrage des ergots du module	
3	Connecteurs femelles DIN 1/8 points pour le raccordement de chaque module vers le rack. A la livraison du rack, ces connecteurs sont protégés par des caches qui devront être retirés avant la mise en place des modules. Le connecteur situé le plus à gauche et repéré PS, est toujours dédié au module d'alimentation du rack. Les autres connecteurs repérés 00 à sont destinés à recevoir tous les autres types de modules.	
4	Trous taraudés recevant la vis de fixation du module	
5	Fenêtre assurant le détrompage lors du montage d'un module d'alimentation Les modules d'alimentation étant pourvus d'un bossage sur leur face arrière, le montage de ce module ne pourra pas être effectué dans aucune autre position.	
6	Trous pour le montage du rack sur un support. Ces trous permettent le passage de vis M6.	
7	Emplacement pour repérage de l'adresse du rack	
8	Emplacement pour repérage de l'adresse réseau de la station	
9	Bornes de terre pour mise à la terre du rack	


Rack extensible: description

Présentation

Ils permettent de constituer une station automate qui peut comporter plusieurs racks.

Dessin d'illustration

Rack extensible

35010525 12/2018

Description

Le tableau suivant décrit les différents éléments d'un rack extensible.

Numéro	Description	
1	Tôle métallique assurant les fonctions de : support de la carte électronique du bus X et protection contre les IEM et les DES. support des modules préserve la rigidité physique du rack.	
2	Fenêtres destinées à l'encrage des ergots du module	
3	Connecteurs femelles DIN 1/8 points pour le raccordement de chaque module vers le rack. A la livraison du rack, ces connecteurs sont protégés par des caches qui devront être retirés avant la mise en place des modules. Le connecteur situé le plus à gauche et repéré PS, est toujours dédié au module d'alimentation du rack. Les autres connecteurs repérés 00 à sont destinés à recevoir tous les autres types de modules.	
4	Trous taraudés recevant la vis de fixation du module	
5	Fenêtre assurant le détrompage lors du montage d'un module d'alimentation Les modules d'alimentation étant pourvus d'un bossage sur leur face arrière, le montage de ce module ne pourra pas être effectué dans aucune autre position.	
6	Trous pour le montage du rack sur un support. Ces trous permettent le passage de vis M6.	
7	Emplacement pour repérage de l'adresse du rack	
8	Emplacement pour repérage de l'adresse réseau de la station	
9	Bornes de terre pour mise à la terre du rack	
10	Micro-interrupteur pour codage de l'adresse rack (uniquement sur racks extensibles)	
11	Connecteurs femelles 9 points SUB D pour l'ajout d'un rack supplémentaire sur le bus X (rack extensible seulement).	

35010525 12/2018

Chapitre 50

Racks TSX RKY.. standard et extensibles : installation/montage

Objectif de ce chapitre

Objet de ce chapitre :

- installation de rack
- montage des racks

Contenu de ce chapitre

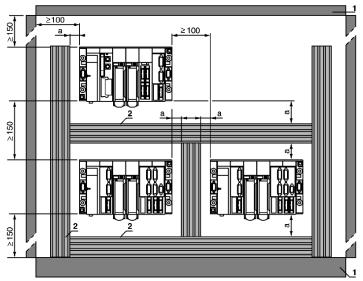
Ce chapitre contient les sujets suivants :

Sujet	
Installation de racks	368
Montage et fixation de racks	
Connexion d'un rack TSX RKY à la terre	

Installation de racks

Introduction

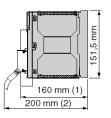
Le montage des racks TSX RKY • nécessite le respect de certaines règles d'installation.


Règles d'installation des racks : description

- 1 Les différents modules (alimentation, processeurs, E/S TOR,...) étant refroidis par convection naturelle, il est obligatoire pour faciliter la ventillation (voir page 423), d'installer les différents racks horizontalement et sur le plan vertical.
- 2 Si plusieurs racks sont installés dans une même armoire, il est recommandé de respecter les dispositions suivantes :
 - laisser un espace minimal de 150 mm entre deux racks superposés, pour permettre le passage des goulottes de câblage et faciliter la circulation de l'air.
 - il est conseillé d'installer les appareils générateurs de chaleur (transformateurs, alimentation process, contacteurs de puissance, etc.) au-dessus des racks.
 - laisser un espace minimal de 100 mm de chaque côté d'un rack pour permettre le passage des câbles et faciliter la circulation de l'air.

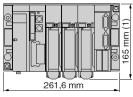
NOTE: Dans le cas où le matériel est installé, hors armoire électrique métallique, dans une zone où les limites d'émission entre 30 MHz et 1 GHz sont à surveiller (norme EN 55022), il est recommandé d'utiliser les racks TSXRKY 8EX ou TSXRKY6EX à la place des TSXRKY8 et TSXRKY6.

Illustration

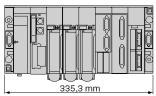

Le dessin suivant illustre les règles d'installation

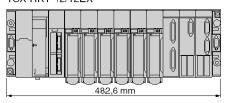


- a Supérieur ou égale à 50 mm
- 1 Appareillage ou enveloppe
- 2 Goulotte ou lyre de câblage


Encombrement des racks : illustrations

Les dessins suivants mettent en évidence l'encombrement des racks TSX RKY ...




TSX RKY 6/6EX

TSX RKY 8/8EX

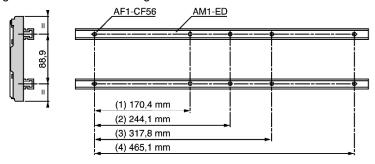
TSX RKY 12/12EX

- (1) Avec modules bornier à vis
- (2) Profondeur maximale avec tous types de modules et leurs connectiques associées

Montage et fixation de racks

Introduction

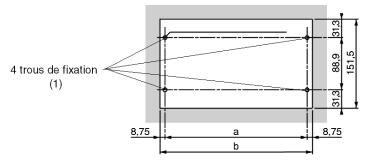
Il est possible de monter les racks TSX RKY •• et TSX RKY •• EX :


- sur profilé DIN largeur 35 mm avec fixation par vis M6x25
- sur platine perforée Telequick ou sur panneau

Les règles d'installation (voir page 368) sont à respecter, quel que soit le type de montage.

Montage sur profilé DIN largeur 35 mm

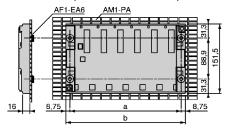
Fixation avec quatre vis M6x25 avec rondelles et écrous coulissants AF1-CF56 ¼ de tour.


Diagramme illustrant le montage

- (1) TSX RKY 4EX
- (2) TSX RKY6 et TSX RKY 6EX
- (3) TSX RKY8 et TSX RKY 8EX
- (4) TSX RKY 12 et TSX RKY 12EX

Montage sur panneau

Plan des trous taraudés (dimensions en mm) :



- (1) le diamètre des trous de fixation doit permettre le passage de vis M6
- ((1) le diamètre des trous de fixation doit permettre le passage de vis M6. **a** et **b** voir tableau.

Montage sur platine Telequick AM1-PA

Fixez le rack avec 4 vis M6x25 + rondelles et écrous clips AF1-EA6.

Plan des trous taraudés (dimensions en mm) :

le tableau suivant vous présente les caractéristiques de montage en fonctions des différents racks **TSX RKY** :

Racks	а	b	Epaisseur
TSX RKY 4EX	170,4 mm	187,9 mm	16 mm
TSX RKY 6/6EX	244,1 mm	261,6 mm	16 mm
TSX RKY 8/8EX	317,8 mm	335,3 mm	16 mm
TSX RKY 12/12EX	465,1 mm	482,6 mm	16 mm

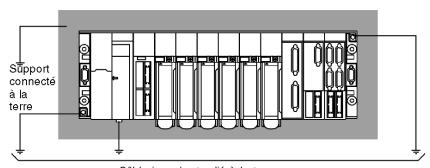
NOTE: Couple de serrage maximum pour la fixation des vis : 2,0 Nm

Connexion d'un rack TSX RKY à la terre

Mise à la terre de racks

La mise à la terre fonctionnelle des racks est assurée par la face arrière en métal.

Ceci signifie que la conformité des automates aux normes environnementales est garantie ; à condition, cependant, que les racks soient fixés à un support en métal dûment mis à la terre. Les différents racks pouvant constituer une station automate TSX P57/TSX H57 doivent être montés soit sur le même support, soit sur des supports différents, dans la mesure où ils sont correctement reliés les uns aux autres.


A DANGER

CHOC ELECTRIQUE - MISE A LA TERRE INCORRECTE

- Reliez chaque borne de mise à la terre à la terre de protection.
- Utilisez un fil vert / jaune d'une section minimum de 2,5 mm (12 AWG) et d'une longueur la plus réduite possible.
- Couple maximum de la vis de raccordement à la terre : 2,0 Nm.
- Votre installation doit être conforme à tous les règlements locaux et nationaux.

Le non-respect de ces instructions provoquera la mort ou des blessures graves.

Illustration:

Câble jaune/vert relié à la terre

NOTE: le 0V interne du PC est relié au raccordement à la terre. Le raccordement à la terre est luimême relié à la terre.

Chapitre 51

TSX Racks RKY.. standard et extensibles : fonctions

Objectif de ce chapitre

Ce chapitre décrit les différentes fonctions des racks TSX RKY.. standard et extensibles.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Constitution d'une station automate avec processeur Premium	376
Constitution d'une station automate avec processeur Atrium	379
Adressage des racks d'une station automate	
Principe d'adressage de deux racks sur la même adresse	
Adresses modules	
Installation des alimentations, processeurs et autres modules	

Constitution d'une station automate avec processeur Premium

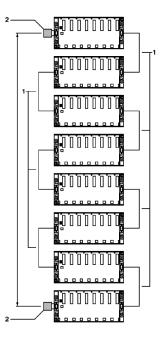
Introduction

Vous avez la possibilité de constituer une station automate avec processeur TSX P57/TSX H57 à partir :

- de racks standard (voir page 359): TSX RKY 6/8/12,
- de racks extensibles (voir page 360): TSX RKY 4EX/6EX/8EX/12EX.

Constitution à partir de racks standard

L'utilisation de racks standard permet de constituer une station automate TSX P57/TSX H57 limitée à un seul rack.


Dans les deux versions, configuration alternative **TSX P57 CA 0244** et configuration continue **TSX P57 CD 0244**, le rack livré dans cette configuration est un rack standard TSX RKY 6.

Constitution à partir de racks extensibles : TSX RKY 4EX/6EX/8EX/12EX

L'utilisation de racks extensibles permet de constituer une station automate pouvant comporter au maximum :

Station	Nombre de racks
Pour une station TSX 57 0244	1 rack TSX RKY 12EX1 rack TSX RKY 4EX/6EX/8EX
Pour une station TSX 57-104\1634\154	2 racks TSX RKY 12EX,4 racks TSX RKY 4EX/6EX/8EX.
Pour un processeur TSX 57-204\254\2634\2834\304\354\3634\454\4634\554\5634\6634 et une station TSX H57 24M/44M	8 racks TSX RKY 12EX,16 racks TSX RKY 4EX/6EX/8EX.

Schéma

- (1) Une même station peut comporter des racks 4, 6, 8 et 12 positions qui sont reliés entre eux par des câbles d'extension bus X (voir page 392) (repère 1).
- (2)Le bus X devra être adapté à chacune de ses extrémités par une terminaison de ligne (voir page 396) (repère 2).

NOTE: la longueur cumulée de l'ensemble des câbles TSX CBY..0K utilisés dans une station automate ne doit jamais excéder 100 m. Pour des applications nécessitant des distances entre racks supérieurs à 100 m, un module de déport permet, à partir du rack supportant le processeur, le déport de deux segments de bus X à une distance maximale de 250 m, chaque segment de bus X pouvant avoir une distance maximale de 100 m.

Câble d'extension bus X

Le raccordement entre racks s'effectue par l'intermédiaire de câbles d'extension bus X TSX CBY..0K qui sont raccordés sur le connecteur SUB D 9 points se trouvant à droite et à gauche de chaque rack extensible.

NOTE: si un câble de bus X ou une ligne de terminaison est déconnecté ou interrompu, certains racks afficheront un défaut. Une fois les racks correctement reconnectés, il est nécessaire de les mettre tous hors tension puis de nouveau sous tension.

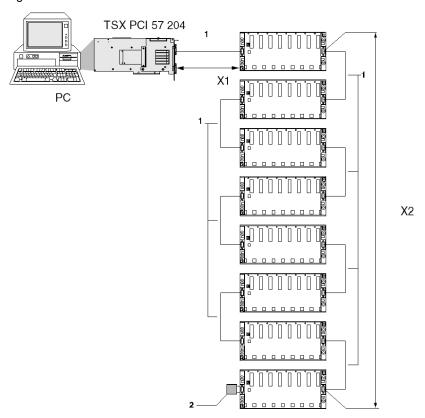
NOTE: comme il n'existe pas de notion d'arrivée et départ au niveau des connecteurs SUB D 9 points, l'arrivée ou le départ d'un câble peut être réalisé(e) indifféremment à partir du connecteur droite ou gauche.

Terminaison de ligne

Les deux racks extensibles situés aux extrémités du chaînage reçoivent **obligatoirement** sur le connecteur SUB D 9 points non utilisé une terminaison de ligne TSX TL YEX repérés **A**/ et /**B**.

Constitution d'une station automate avec processeur Atrium

Introduction


Vous avez la possibilité de constituer une station automate avec processeur Atrium à partir de racks extensibles : TSX RKY 4EX/6EX/8EX/12EX.

Constitution à partir de racks extensibles

L'utilisation de racks extensibles permet de constituer une station automate pouvant comporter au maximum :

Station	Nombre de racks
Pour une station TSX PCI 57 204	8 racks TSX RKY 12EX,16 racks TSX RKY 4EX/6EX/8EX.
Pour une station TSX PCI 57 354	8 racks TSX RKY 12EX,16 racks TSX RKY 4EX/6EX/8EX.

Diagramme:

- (1) Une même station peut comporter des racks 4, 6, 8 et 12 positions qui sont reliés entre eux par des câbles d'extension bus X (voir page 392) (repère 1).
- (2)Le bus X devra être adapté à chacune de ses extrémités par une terminaison de ligne (voir page 396) (repère 2).

NOTE: la longueur cumulée (X1+X2) de l'ensemble des câbles TSX CBY..0K utilisés dans une station automate ne devra jamais excéder 100 m. Pour des applications nécessitant des distances entre racks supérieurs à 100 m, un module de déport permet, à partir du rack supportant virtuellement le processeur Atrium, le déport de deux segments de bus X à une distance maximale de 250 m, chaque segment de bus X pouvant avoir une distance maximale de 100 m.

Câble d'extension bus X

Le raccordement entre racks s'effectue par l'intermédiaire de câbles d'extension bus X TSX CBY••0K qui sont raccordés sur le connecteur SUB D 9 points se trouvant à droite et à gauche de chaque rack extensible et en haut de la face avant du processeur.

NOTE: si un câble de bus X ou une ligne de terminaison est déconnecté ou interrompu, certains racks afficheront un défaut. Une fois les racks correctement reconnectés, il est nécessaire de les mettre tous hors tension puis de nouveau sous tension.

NOTE: comme il n'existe pas de notion d'arrivée et départ au niveau des connecteurs SUB D 9 points, l'arrivée ou le départ d'un câble peut être réalisé(e) indifféremment à partir du connecteur droite ou gauche.

Terminaison de ligne

A l'origine, l'équivalent de la terminaison de ligne /A est intégré au processeur, et, de ce fait, celuici s'intègre en tête de ligne du Bus X. Le rack extensible situé à l'extrémité du chaînage reçoit donc **obligatoirement** sur le connecteur SUB D 9 points non utilisé une terminaison de ligne TSX TLY EX repère B/.

Remarque sur le processeur Atrium

Par défaut, le processeur Atrium est équipé pour être monté en tête de ligne du bus X ; de ce fait, la terminaison de ligne /A est intégrée sur celui-ci sous la forme d'une carte fille décrochable.

Dans le cas ou une application nécessite l'intégration du processeur à l'intérieur d'un tronçon de bus X, un ensemble mécanique est livré avec le processeur afin de satisfaire à ce besoin.

Cet ensemble mécanique se présente sous la forme :

- d'une carte fille qui se monte en lieu et place de la terminaison de ligne A/,
- d'un plastron équipé d'un connecteur SUB D 9 points pour le raccordement d'un câble de bus X TSX CBY••0K et d'un câble pour le raccordement à la carte fille.

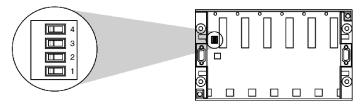
Adressage des racks d'une station automate

Vue d'ensemble

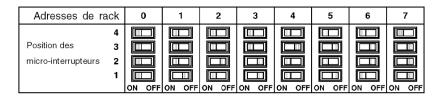
Deux cas peuvent se présenter lors de l'adressage des racks d'une station automate :

- station automate constituée d'un rack standard (voir page 359),
- station automate constituée de racks extensibles (voir page 360).

Station constituée d'un rack standard


La station est toujours limitée à un seul rack ; de ce fait l'adresse du rack est implicite et a pour valeur 0 (pas de micro-interrupteurs).

Station constituée de racks extensibles


Il est nécessaire d'affecter à chacun des racks une adresse. Cette adresse est codée à partir de 4 micro-interrupteurs situés sur le rack.

Les micro-interrupteurs 1 à 3 permettent le codage de l'adresse du rack sur le bus X (0 à 7), le micro-interrupteur 4 permet le codage de deux racks (4, 6 ou 8 positions) sur la même adresse. Cette dernière fonctionnalité est gérée par le logiciel de programmation.

Schéma mettant en évidence le micro-interrupteur

Tableau des adresses rack

NOTE: à la livraison, les micro-interrupteurs 1, 2, 3 sont en position ON (adresse 0).

Affectation des adresses aux différents racks

Adresse 0 : cette adresse est toujours affectée au rack qui héberge :

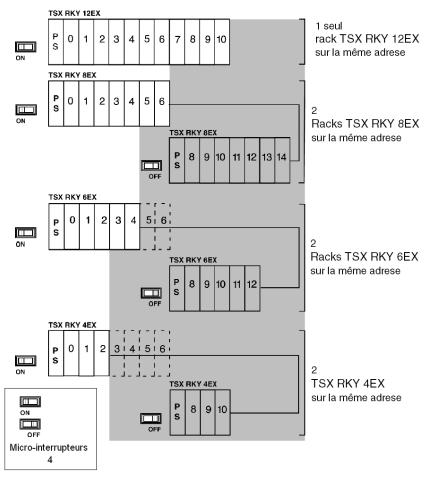
- physiquement le processeur TSX P57/TSX H57,
- virtuellement le processeur TSX PCI 57.

Ce rack peut être situé dans une position quelconque de la chaîne.

Adresses 1 à 7 : elles peuvent être affectées dans un ordre quelconque à tous les autres racks extensibles de la station.

NOTE : le codage de l'adressage rack devra être effectué avant le montage du module d'alimentation.

NOTE: si deux ou plusieurs racks sont positionnés à la même adresse (autre que l'adresse 0), les racks concernés passent en défaut ainsi que tous leurs modules. Après avoir corrigé les adresses, il est nécessaire de mettre hors tension puis sous tension les racks concernés.


Cette remarque ne concerne que les racks de référence TSX RKY..EX

Si deux ou plusieurs racks sont à l'adresse 0, le rack hébergeant le processeur ne passe pas en défaut.

Principe d'adressage de deux racks sur la même adresse

Illustration

Le schéma suivant illustre le principe d'adressage de 2 racks sur la même adresse.

NOTE:

- Les racks TSX RKY 12EX ne peuvent pas recevoir un deuxième rack sur la même adresse.
- Les racks TSX RKY 8EX/6EX/4EX pourront être mixés entre eux.
- Deux racks TSX RKY 8EX/6EX/4EX de même adresse ne seront pas forcément chainés l'un à la suite de l'autre. L'ordre de répartition physique n'a pas d'importance.

Adresses modules

Présentation

Pour l'ensemble des racks standards et extensibles, l'adresse d'un module est géographique et sera fonction de la position du module sur le rack. L'adresse de chaque position est indiquée audessous de chaque connecteur ; le connecteur repéré PS est toujours dédié à l'alimentation du rack.

Plusieurs cas d'adressage module sont possibles :

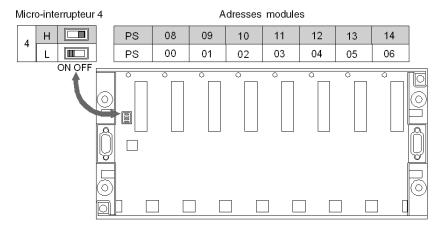
- adressage des modules sur racks standards (voir page 359),
- adressage des modules sur racks extensibles (voir page 360).

Adressage des modules sur racks standards

- pour un TSX RKY8 : utilisez les adresses 00 à 04,
- pour un TSX RKY8 : utilisez les adresses 00 à 06,
- pour un TSX RKY12 : utilisez les adresses 00 à 10.

Adressage des modules sur racks extensibles

L'adresse d'un module sera fonction de la position du micro-interrupteur 4 :


- micro-interrupteur 4 en position ON, les modules auront pour adresse (00 à x) selon le type de rack,
- micro-interrupteur 4 en position OFF, les modules auront pour adresse (08 à y) selon le type de rack. Cette fonctionnalité n'est gérée que par le logiciel de programmation.

Le tableau suivant vous présente les adresses en fonction de la position du micro-interrupteur 4 :

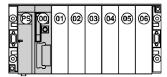
Position du micro-interrupteur 4	ON	OFF
Racks TSX RKY 4EX	00 à 02	08 à 10
Racks TSX RKY 6EX	00 à 04	08 à 12
Racks TSX RKY 8EX	00 à 06	08 à 14
Racks TSX RKY 12EX	00 à 10	non utilisable

Illustration

Schéma illustrant les adresses module sur rack TSX RKY 8EX

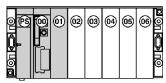
NOTE : les adresses grisées ne sont accessibles qu'à partir du logiciel de programmation

Installation des alimentations, processeurs et autres modules


Installation sur rack standard ou extensible d'adresse 0 avec processeur Premium

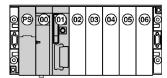
Le rack d'adresse 0 reçoit obligatoirement un module d'alimentation et le module processeur. Les automates Premium disposant de deux types d'alimentation (format standard ou double format), la position du processeur sera fonction du type d'alimentation utilisé.

Utilisation d'un module d'alimentation au format standard :

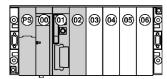

- le module d'alimentation occupe systématiquement la position PS,
- le module processeur simple format est installé en position 00 (position préférentielle) ou en position 01, dans ce dernier cas la position 00 est indisponible.

Dessin d'illustration:

- le module processeur double format est installé dans les positions 00 et 01 (positions préférentielles) ou dans les positions 01 et 02, dans ce dernier cas la position 00 est indisponible,
- les autres modules sont installés à partir de la position 01, 02 ou 03 selon l'installation du processeur.


Dessin d'illustration

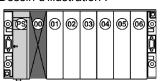
Utilisation d'un module d'alimentation double format :


- le module d'alimentation occupe systématiquement la position PS,
- le module processeur simple format est obligatoirement installé en position 01.

Dessin d'illustration:

- le module processeur double format est installé dans les positions 01 et 02,
- les autres modules sont installés à partir de la position 02 ou 03 selon le type de processeur.

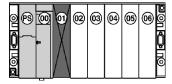
Dessin d'illustration:


Installation sur rack extensible d'adresse 0 avec processeur Atrium

Le processeur Atrium, intégré dans le PC occupe virtuellement une position sur le rack d'adresse 0 ; cette position virtuelle devra être inoccupée. Les automates Premium disposant de deux types d'alimentation (format standard ou double format), la position inoccupée est fonction du type d'alimentation utilisé.

Utilisation d'un module d'alimentation au format standard :

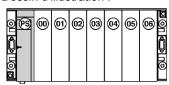
- le module d'alimentation occupe systématiquement la position PS,
- La position 00 emplacement virtuel du processeur doit être inoccupée.
- Les autres modules sont mis en œuvre à partir de la position 01.


Dessin d'illustration:

Utilisation d'un module d'alimentation double format :

- le module d'alimentation occupe systématiquement les positions PS et 00,
- la position 01 emplacement virtuel du processeur doit être inoccupée,
- les autres modules sont installés à partir de la position 02.

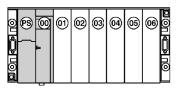
Dessin d'illustration:


Installation sur rack extensible d'adresse 1 à 7 quel que soit le type de processeur

Chaque rack doit être pourvu d'un module d'alimentation soit au format standard, soit au double format.

Utilisation d'un module d'alimentation au format standard :

- le module d'alimentation occupe systématiquement la position PS,
- les autres modules sont installés à partir de la position 00.


Dessin d'illustration:

Utilisation d'un module d'alimentation double format :

- le module d'alimentation occupe systématiquement la position PS.
- Les autres modules sont mis en œuvre à partir de la position 01.

Dessin d'illustration:

35010525 12/2018

Chapitre 52

Racks TSX RKY: accessoires

Objectif de ce chapitre

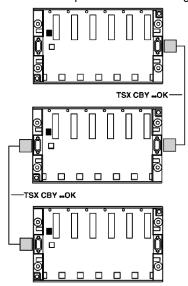
Ce chapitre a pour objectif de présenter les différents accessoires destinés aux racks TSX RKY...

Contenu de ce chapitre

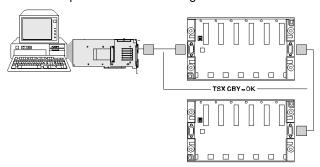
Ce chapitre contient les sujets suivants :

Sujet		
Câble d'extension de bus X TSX CBY0K	392	
Câble d'extension de bus X TSX CBY 1000		
Terminaison de ligne TSX TLYEX	396	
Positionnement des terminaisons de ligne sur une station disposant d'un processeur Premium		
Positionnement des terminaisons de ligne sur une station disposant d'un processeur Atrium		
TSX RKA 02, cache de protection pour les positions inoccupées		
Etiquetage	400	
Compatibilité avec le parc existant		

Câble d'extension de bus X TSX CBY..0K


Vue d'ensemble

Ces câbles de longueur prédéterminée permettent le chaînage des racks extensibles **TSX RKY..EX** et véhiculent les différents signaux du bus X.


En cas d'utilisation d'un processeur Atrium, ils permettent également le raccordement entre le processeur intégré dans le PC et le premier rack de la station.

Ils sont équipés à chaque extrémité d'un connecteur SUB D 9 points mâle permettant le raccordement au connecteur SUB D 9 points femelle du rack extensible ou du processeur Atrium.

Station avec processeur TSX intégrable sur le rack

Station avec processeur Atrium intégrable dans un PC

35010525 12/2018

Important:

La longueur cumulée de l'ensemble des câbles utilisés dans une station automate est limitée à 100 mètres.

A ATTENTION

DETERIORATION DE L'EQUIPEMENT

Mettez tous les éléments de la station (racks, PC, etc.) hors tension avant d'insérer ou d'extraire un câble TSX CBY0K.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Différents types de câble disponibles

Plusieurs longueurs de câbles sont proposées afin de répondre aux besoins des différents utilisateurs.

Tableau récapitulatif des différents types de câble

Référence	Longueurs
TSX CBY 010K (II ≥ 02)	1 mètre
TSX CBY 030K (II ≥ 02)	3 mètres
TSX CBY 050K (II ≥ 02)	5 mètres
TSX CBY 120K (II ≥ 02)	12 mètres
TSX CBY 180K (II ≥ 02)	18 mètres
TSX CBY 280K (II ≥ 02)	28 mètres
TSX CBY 380K (II ≥ 02)	38 mètres
TSX CBY 500K (II ≥ 02)	50 mètres
TSX CBY 720K (II ≥ 02)	72 mètres
TSX CBY 1000K (II ≥ 02)	100 mètres

Câble d'extension de bus X TSX CBY 1000

Présentation

Pour les longueurs de bus X de moins de 100 mètres mais différentes de celles disponibles pour les câbles à connecteurs, utilisez **toujours** un câble **TSX CBY 1000**.

Ce câble doit être équipé à chacune de ses extrémités de connecteurs de raccordements TSX CBY K9 à monter par l'utilisateur. La procédure de montage est décrite dans les instructions livrées avec le câble et les connecteurs.

La mise en œuvre de ces câbles nécessite de disposer des éléments suivants :

- 1 câble TSX CBY 1000
- 1 lot de deux connecteurs 9 points TSX CBY K9
- 1 kit TSX CBY ACC10

1 câble TSX CBY 1000

Ce câble doit comprendre un touret de 100 mètres et deux testeurs destinés à vérifier le câble après réalisation des divers raccordements.

Illustration:

Testeurs

1 lot de deux connecteurs 9 points TSX CBY K9

Ce lot doit comprendre pour chaque connecteur :

- 1 corps de connecteurs
- 1 lot de contacts
- 1 capot de blindage interne
- 1 capot de blindage externe
- 1 ferrule
- 1 capot plastique avec 2 vis de montage

Illustration:

1 kit TSX CBY ACC10

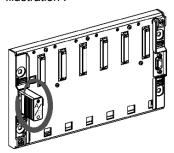
Ce kit comprend les éléments suivants :

- 2 pinces à sertir
- un extacteur de contact à utiliser en cas d'erreur.

Illustration:

Pinces à sertir

Terminaison de ligne TSX TLYEX


Introduction

Lorsqu'on utilise des racks extensibles (voir page 375), le bus X doit être équipé d'une terminaison de ligne à chaque extrémité.

Vue d'ensemble

Une terminaison de ligne est constituée d'un connecteur SUB D 9 points et d'un capot contenant les éléments d'adaptation. Elle se monte sur le connecteur SUD D 9 points des racks extensibles situés en bout de ligne.

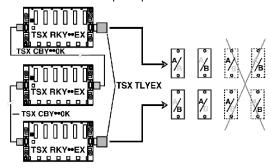
Illustration:

Les terminaisons de ligne TSX TLYEX sont vendues par lot de 2 et repérées **A/** et **/B**. Le bus doit comporter obligatoirement une terminaison **A/** à l'une de ses extrémités et une terminaison **/B** à l'autre extrémité, sans ordre prédéfini (*voir page 397*).

A ATTENTION

DETERIORATION DE L'EQUIPEMENT

Mettez tous les racks d'éléments de la station hors tension avant d'insérer ou d'extraire une terminaison de ligne.


Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

35010525 12/2018

Positionnement des terminaisons de ligne sur une station disposant d'un processeur Premium

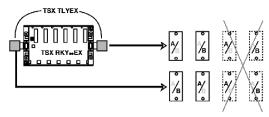
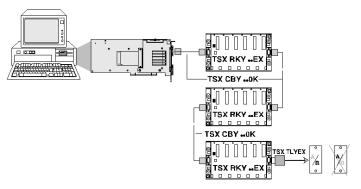

Positionnement sur une station automate contenant plusieurs racks extensibles TSX RKY..EX

Schéma illustrant le principe :

Positionnement sur une station automate contenant un seul rack extensible TSX RKY..EX

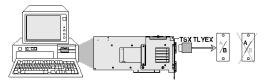
Schéma illustrant le principe :


NOTE: En cas d'utilisation d'un seul rack extensible, une terminaison de ligne doit toujours être montée sur chacun des connecteurs SUB D 9 points du rack.

Positionnement des terminaisons de ligne sur une station disposant d'un processeur Atrium

Présentation

D'origine, l'équivalent de la terminaison de la ligne /A est intégrée au processeur et de ce fait, celuici s'intègre en tête de ligne du bus X. Le rack extensible situé à l'extrémité du chaînage reçoit donc obligatoirement sur le connecteur SUB D 9 points non utilisé une terminaison de ligne TSX TLY EX repère /B.


Schéma de principe :

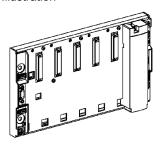
Cas particulier.

Dans le cas où aucun élément n'est raccordé sur le Bus X, la terminaison de ligne **TSX TLYEX**, /B doit être installée sur le connecteur Bus X du processeur **Atrium**.

Illustration:

35010525 12/2018

TSX RKA 02, cache de protection pour les positions inoccupées


Présentation

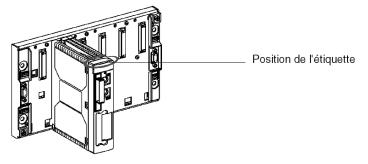
Si une position est inoccupée sur un rack, il est conseillé de monter dans cet emplacement un cache **TSX RKA 02**, prévu à cet effet.

Ce cache se monte et se fixe sur le rack comme un module de profondeur réduite.

Les caches TSX RKA 02 sont vendus par quantités indivisibles de cinq pièces.

Illustration

Etiquetage


Repérage des positions des modules sur le rack

Lorsque le module est en place sur le rack, celui-ci masque le repère de la position qui est sérigraphiée sur le rack.

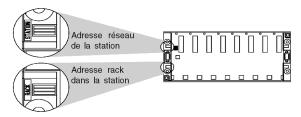
De ce fait et afin de pouvoir identifier rapidement la position d'un module, chaque rack est livré avec une planche d'étiquettes adhésives permettant de repérer la position de chaque module.

Cette étiquette adhésive se colle sur la partie supérieure du module lorsque celui-ci est en place sur le rack.

illustration : exemple de repérage du module processeur

Planche d'étiquettes :

PS	00	01	020	03	04	05	06
07	08	09	10	11	12	13	14


Repérage des racks

Chaque rack est livré avec un lot de brochettes de repères encliquetables permettant le repérage pour chaque rack de :

- le repère du rack dans la station
- le repère réseau de la station dans le cas ou celle-ci est connectée à un réseau de communication

A cet effet, chaque rack dispose de deux emplacements permettant de recevoir ces repères.

Illustration:

Compatibilité avec le parc existant

Tableau récapitulatif

Ce tableau vous présente la compatibilité avec le parc existant en fonction des anciennes et des nouvelles références :

			Configuration	on déjà en place av	/ec	
			Anciennes	Nouvelles références		
			TSX RKYE TSX CBYOK (*• 01) TSX TLY (*• 01)	TSX RKYE TSX CBYOK (** 01) TSX TLY A+B (** 03)	TSX RKYE TSX CBYOK (** 02) TSX CBY 1000 TSX TLY A+B (** 03)	TSX RKYEX TSX CBYOK (*• 02) TSX CBY 1000 TSX TLYEX A/+/B
		2 terminaisons TSX TLY (•• 01)	OUI	NON (1)	NON (1)	NON (3)
	rences	Câbles TSX CBYOK (•• 01)	OUI	OUI	NON (2)	NON (4)
oe	Anciennes références	Terminaisons TSX TLY A+B (•• 03)	OUI	OUI	OUI	NON (3)
ıtion av	Anci	Rack(s) TSX RKYE	OUI	OUI	OUI	NON (5)
onfigura	es	Câble(s) TSX CBYOK (•• 02) ou CBY 1000	OUI	OUI	OUI	OUI
de la c	éférenc	Rack(s) TSX RKYEX	NON (6)	OUI	OUI	OUI
Evolution de la configuration avec	Nouvelles références	Terminaisons TSX TLYEX A/+/B	OUI	OUI	OUI	OUI

Détails des incompatibilités :

- Fonctionnement correct mais détection incorrecte de défaillance du bus X. Comportement des sorties non garanti en cas de défaillance du bus.
- Fonctionnement correct sur 50 mètres au lieu de 100 mètres. Détection correcte de défaillance du bus X.
- 3. Mauvaise adaptation du bus, aucune garantie de fonctionnement. Le TLY et le TLY A/B adaptent les signaux en fonction du 0V (fil dans le câble du bus X). Les TLY EX A/B adaptent les signaux par rapport au blindage.
- 4. Mauvaise détection du doublon d'adresse.
- 5. Fonctionnement correct mais pas de détection du doublon d'adresse.
- **6.** Mauvaise adaptation du bus. Il faut des bouchons TLY EX pour avoir un fonctionnement correct dès qu'un TSXRKY..EX. est utilisé dans la configuration.

NOTE : Dans une station automate, le couple de la terminaison de ligne TSX TLY doit être du même indice.

•• correspond à la version du produit.

Chapitre 53 Module de déport de bus X

Objectif de ce chapitre

Ce chapitre a pour objectif de présenter le module de déport de bus X et son installation.

Contenu de ce chapitre

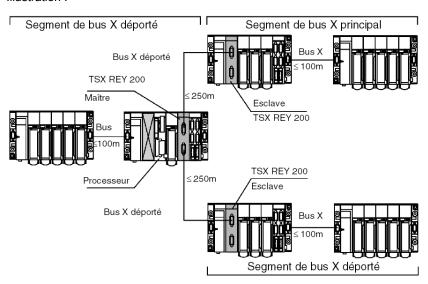
Ce chapitre contient les sujets suivants :

Sujet	Page		
Module d'extension de bus X : introduction	406		
Module d'extension de rack : description physique	408		
Module de déport bus X : mise en oeuvre	409		
Module d'extension de bus X : Configuration	412		
Module d'extension de bus X : distances maximum en fonction des types de modules			
Modules d'extension de bus X : raccordements	417		
Module de déport bus X : diagnostic			
Topologie d'une station automate avec module de déport			
Gestion d'une alimentation équipée d'un module d'extension de bus X	422		

Module d'extension de bus X : introduction

Généralités

Le bus de l'automate Premium permet de raccorder 8 racks de 12 emplacements (TSX RKY 12EX) ou 16 racks de 4, 6 ou 8 emplacements (TSX RKY 4EX/6EX/8EX) répartis sur une longueur de 100 mètres maximum.


Dans le cas d'applications nécessitant des distances plus élevées entre les racks, le module d'extension du bus X (TSX REY 200) permet d'augmenter de façon considérable cette distance tout en conservant les caractéristiques et la performance d'une station automate composée d'un seul segment de bus X sans module d'extension.

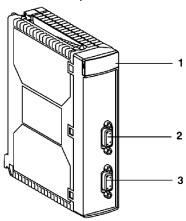
Le système se compose des éléments suivants :

- un module d'extension de bus X (TSX REY 200) appelé « maître » situé sur le rack ayant l'adresse 0 (rack hébergeant le processeur) et sur le segment principal du bus X. Ce module possède deux voies permettant d'étendre les deux segments du bus X à une distance maximum de 250 mètres.
- un ou deux modules TSX REY 200 modules appelés « esclave » et chacun situé sur un rack sur les segments de bus étendus.
- chacun des modules esclave est raccordé au module maître par un câble TSX CBRY 2500 équipé de connecteurs TSX CBRY K5.

Exemple de topologie

Illustration:

Consommation du module


Consommation avec une alimentation 5 VCC: 500 mA

Puissance dissipée : 2,5 W.

Module d'extension de rack : description physique

Illustration

Schéma descriptif:

Tableau des libellés

Tableau de description en fonction du nombre :

Libellé	Description
1	Bloc de visualisation composé de 6 voyants : Voyant RUN : indique l'état de fonctionnement du module. Voyant ERR : signale un défaut à l'intérieur du module. Voyant I/O : signale un défaut extérieur au module. Voyant MST : indique l'état de la fonction maître ou esclave du module. Voyant CH0 : indique l'état de fonctionnement de la voie 0. Voyant CH1 : indique l'état de fonctionnement de la voie 1.
2	Connecteur pour la liaison de la voie 0 du module.
3	Connecteur pour la liaison de la voie 1 du module.

Module de déport bus X : mise en oeuvre

Introduction

Plusieurs cas peuvent se présenter à vous lors de la mise en œuvre d'un module de déport de bus X :

- mise en œuvre d'un module maître sur station Premium
- mise en œuvre d'un module maître sur station Atrium
- mise en œuvre d'un module esclave

Mise en œuvre d'un module maître sur station Premium

Le module maître s'installe obligatoirement :

- sur le rack qui supporte le processeur (rack d'adresse 00) ; ce rack étant situé sur le segment de bus X principal.
- dans une position libre de ce rack.

Le tableau ci-dessous indique les différents cas de figures possibles en fonction du format de l'alimentation et du processeur :

Cas	Illustration
Rack adresse 0 avec alimentation et processeur simple format: alimentation en position PS processeur obligatoirement en position 01 module TSX REY 200 dans l'une des positions disponibles du rack (la position 00 est interdite)	
Rack adresse 0 avec alimentation double format et processeur simple format : alimentation en position PS et 00 processeur obligatoirement en position 01 module TSX REY 200 dans l'une des positions disponibles du rack	
Rack adresse 0 avec alimentation simple format et processeur double format : alimentation en position PS processeur obligatoirement en position 01 et 02 module TSX REY 200 dans l'une des positions disponibles du rack (la position 00 est interdite)	

Cas	Illustration
Rack adresse 0 avec alimentation et processeur double format : alimentation en position PS et 00 processeur obligatoirement en position 01 et 02 module TSX REY 200 dans l'une des positions disponibles du rack	

Mise en œuvre d'un module maître sur station Atrium

Comme sur une station Premium, le module maître s'installe obligatoirement :

- sur le rack qui supporte virtuellement le processeur (rack d'adresse 0); ce rack étant situé sur le segment de bus X principal.
- dans une position quelconque de ce rack en dehors de la position dédiée au module d'alimentation et celle occupée virtuellement par le processeur (possibilité d'utiliser l'emplacement 00 si l'alimentation est simple format).

Contrainte:

La position virtuelle du processeur (position inoccupée) sera obligatoirement la position 01.

Le tableau ci-dessous indique les différents cas de figures possibles en fonction du format de l'alimentation et du processeur :

Cas	Illustration
Rack adresse 0 avec alimentation simple format: alimentation en position PS position virtuelle du processeur obligatoirement en position 01 (position toujours inoccupée) module TSX REY 200 dans l'une des positions disponibles du rack (la position 00 est interdite)	
Rack adresse 0 avec alimentation double format: alimentation en position PS position virtuelle du processeur obligatoirement en position 01 (position toujours inoccupée) module TSX REY 200 dans l'une des positions disponibles du rack	

Mise en œuvre du module esclave

Le module esclave s'installe sur l'un des racks du segment de bus déporté et dans une position quelconque de ce rack en dehors de la position dédiée au module d'alimentation.

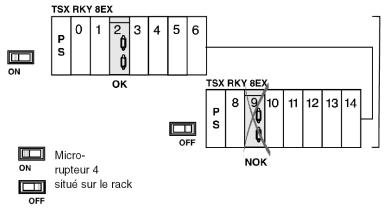
Le tableau ci-dessous indique les différents cas de figures possibles en fonction du format de l'alimentation et du processeur :

Cas	Illustration
Rack avec alimentation simple format: alimentation en position PS module TSX REY 200 dans l'une des positions disponibles du rack (la position 00 est interdite)	2 1
Rack avec alimentation double format: alimentation en position PS et 00 module TSX REY 200 dans l'une des positions disponibles du rack	

Module d'extension de bus X : Configuration

Généralités

La configuration du module comme maître ou esclave est automatique :


- si le module est installé sur le rack d'adresse 0, il sera automatiquement déclaré comme maître.
- si le module est installé sur un rack d'adresse différente de 0, il sera automatiquement déclaré comme esclave.

NOTE: Si 2 racks sont déclarés à l'adresse 0, le module maître **doit** être positionné sur le rack hébergeant les adresses de module « basses », comme indiqué dans la figure ci-dessous. Adresses modules « basses » :

- adresses 0 à 6 sur TSX RKY 8EX
- adresses 0 à 4 sur TSX RKY 6EX
- adresses 0 à 2 sur rack TSX RKY 4EX

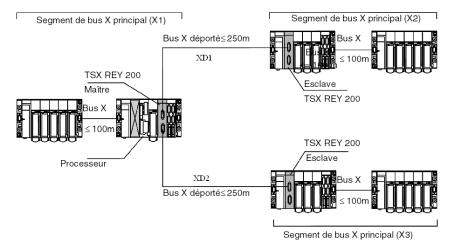
Dessin d'illustration

Exemple: 2 racks TSX RKY 8EX à l'adresse 0.

NOTE: Si deux racks sont déclarés à l'adresse 0, le rack hébergeant les modules possédant les adresses « hautes » ne peut pas accueillir de module d'extension esclave.

Adresses modules « hautes »:

- adresses 8 à 14 sur rack TSX RKY 8EX
- adresses 8 à 12 sur rack TSX RKY 6EX
- adresses 8 à 10 sur rack TSX RKY 4EX

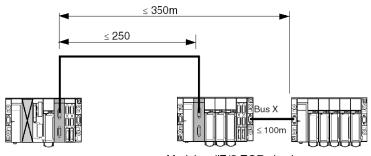

Module d'extension de bus X : distances maximum en fonction des types de modules

Généralités

La figure ci-dessous présente un récapitulatif des distances maximum autorisées pour les différents segments de bus X et extensions de bus X :

- pour chaque segment de bus X (X1, X2 ou X3) : longueur maximum 100 mètres
- pour chaque extension de bus X (XD1 ou XD2): longueur maximum 250 mètres

Illustration:

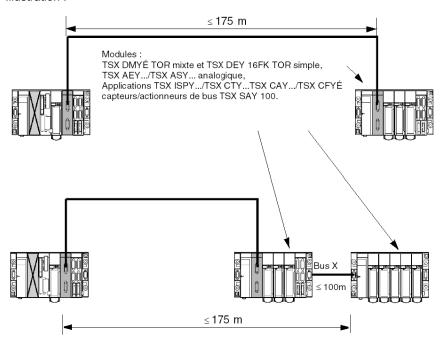

Compte tenu de ces éléments, la distance maximum entre le processeur et les modules les plus éloignés peut être de 350 mètres.

Cette distance de 350 mètres n'est possible que pour les modules d'entrées/sorties TOR simples. Les illustrations suivantes indiquent les restrictions en fonction du type de module.

NOTE: une extension est interdite pour les modules de communication TSX SCY •••/TSX ETY•••/TSX IBY •••/TSX PBY •••. Ces modules doivent être situés sur le segment principal du bus X1

Modules d'E/S TOR simples et de sécurité

Illustration:


Modules d'E/S TOR simples : TSX DEY.../TSX DSY...

et modules de sécurité TSX PAYÉ

Exception: TSX DEY 16FK

Modules d'E/S TOR mixtes, analogiques, métiers, bus capteurs/actionneurs

Illustration:

NOTE: pour les modules suivants:

- TSX DEY 16 FK avec indice PV ≥ 06,
- TSX DMY 28FK / 28RFK
- TSX AEY 810/1614
- TSX ASY 410 avec indice PV ≥ 11,
- TSX ASY 800
- TSX CTY 2C
- TSX CAY 22/42/33

distance maximum autorisée (câble d'extension et longueur de câble de bus X) : 225 mètres.

Modules de communication

A ATTENTION

COMPORTEMENT INATTENDU DE L'APPLICATION

Les modules suivants doivent être situés sur le segment principal du bus X.

- Communication TSX SCY...
- Réseau TSX ETY...
- TSX IBY... Bus de terrain /TSX PBY

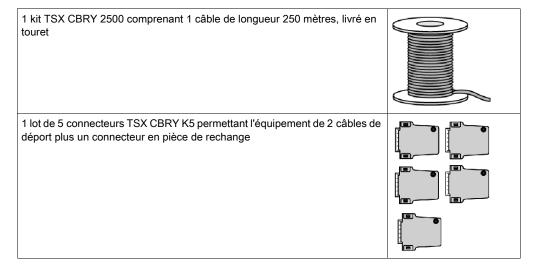
Ne doivent pas être placés sur les extensions de bus X.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

Illustration:

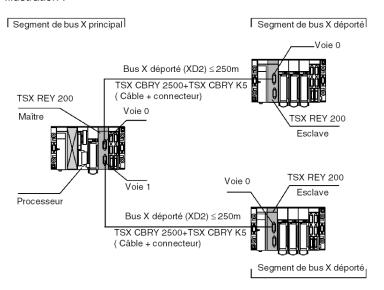
Modules d'extension de bus X : raccordements

Généralités


Pour étendre le bus X, vous devez utiliser :

- le kit TSX CBRY 2500 constitué d'un câble en touret d'une longueur de 250 mètres
- le lot de connecteurs TSX CBRY K5

Le câble doit être équipé à chacune de ses extrémités de connecteurs de raccordements que vous devez monter. La procédure de montage des connecteurs sur le câble est décrite dans les instructions fournies avec le lot de connecteurs TSX CBRT K5.


Accessoires de raccordement

L'installation d'une extension de bus X requiert donc les éléments suivants :

Principes de raccordement

Illustration:

NOTE: Chaque segment de bus X doit posséder une terminaison de ligne A/ et B/ (voir page 396) à chaque extrémité.

Module de déport bus X : diagnostic

Par voyants de signalisation

Le bloc de visualisation du module TSX REY 200 situé en face avant du module permet le diagnostic du système de déport.

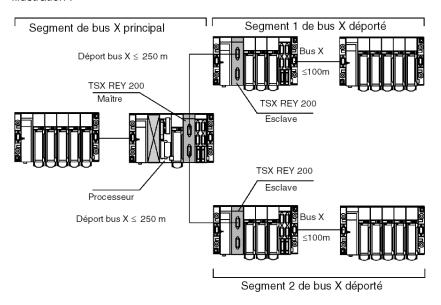
Illustration : bloc de visualisation (voir page 408)

Module en fonction maître (positionné sur rack d'adresse 00)

Tableau de diagnostic :

Etat du voyant						Etat module	Commentaires
ERR	RUN	Mst	I/O	СН0	CH1		
С	i	i	i	i	i	Défaut	Pas de communication avec le processeur
E	Α	Α	E	Α	Е	OK	Voie 0 active Voie 1 inactive
E	A	Α	E	Е	Α	OK	Voie 0 inactive Voie 1 active
E	A	Α	Е	Α	Α	ОК	Voie 0 active Voie 1 active
E	A	Α	Α	Е	E	Défaut	Voie 0 inactive Voie 1 inactive
Légende							
A : allu	A : allumé ; E : éteint ; C : clignotant ; i : Indéterminé						

Module en fonction esclave (positionné sur rack d'adresse différente de 00)

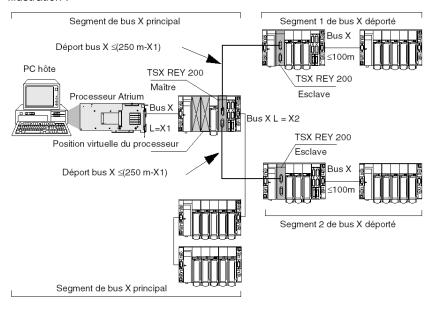

Tableau de diagnostic :

Etat du voyant						Etat module	Commentaires
ERR	RUN	Mst	1/0	CH0	CH1		
С	i	i	i	i	i	Défaut	Pas de communication avec processeurs
E	Α	E	E	Α	E	ОК	Voie 0 active
E	Α	E	Α	E	E	Défaut	Voie 0 inactive
Légende							
A : allu	A : allumé ; E : éteint ; C : clignotant ; i : Indéterminé						

Topologie d'une station automate avec module de déport

Station Premium

Illustration:



Capacité maximale de la station :

- Avec processeurs TSX P57 104\154 :
 - O 2 racks TSX RKY 12 EX,
 - 4 racks TSX RKY 4EX/6EX/8EX.
- Avec processeurs TSX P57 204\254\304\354\454\554\5634\6634 et TSX H57 24M/44M :
 - O 8 racks TSX RKY 12 EX,
 - o 16 racks TSX RKY 4EX/6EX/8EX.

Station Atrium

Illustration:

Capacité maximale de la station :

- Avec processeurs TSX PCI 57 204 :
 - 2 racks TSX RKY 12 EX.
 - 4 racks TSX RKY 4EX/6EX/8EX.
- Avec processeurs TSX PCI 57 354 :
 - O 8 racks TSX RKY 12 EX,
 - 16 racks TSX RKY 4EX/6EX/8EX.

NOTE: Dans tous les cas, la distance de déport des segments de bus X est définie par rapport à la situation du processeur. La distance maximale est de 250 mètres. Dans le cas particulier du processeur Atrium où celui-ci est situé sur le PC, la distance de déport des segments de bus X par rapport au rack d'adresse 0 est égale à 250 mètres moins la distance (X1) entre le processeur et le rack d'adresse 0. Segment de bus X principal = (X1+X2)≤ 100 mètres.

Gestion d'une alimentation équipée d'un module d'extension de bus X

Généralités

A ATTENTION

COMPORTEMENT INATTENDU DE L'APPLICATION

Si un module d'extension de bus X (TSX REY 200) est utilisé dans une installation, vous devez connecter, mettre sous tension et mettre en fonction tous les racks configurés dans l'application avant de gérer l'application logicielle.

Le non-respect de ces instructions peut provoquer des blessures ou des dommages matériels.

NOTE: toute utilisation d'un module d'extension de bus X (TSX REY 200) dans une installation rend la gestion de l'installation ou de la machine dépendante de tous les racks configurés dans l'application actuelle.

A cette fin, il convient d'effectuer un contrôle d'application pour s'assurer que tous les racks d'application sont présents en testant le bit %MWxy MOD 2 X6 (échanges explicites) sur au moins un module sur chaque rack. Ce test permet d'éliminer toute déclaration incorrecte dans l'adressage des racks, en particulier si deux racks ont par erreur la même adresse. Ce test n'entre en jeu qu'après le redémarrage complet de l'installation (mise sous tension, installation modifiée, RESET du processeur, configuration modifiée).

Chapitre 54 Module de ventilation

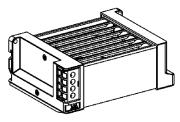
Objectif de ce chapitre

Ce chapitre traite du module de ventilation et de son installation.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page				
Module de ventilation : présentation générale					
Module de ventilation : description physique	426				
Module de ventilation : catalogue	427				
Module de ventilation : dimensions					
Module de ventilation : montage	429				
Règles d'installation de racks équipés de modules de ventilation					
Module de ventilation : raccordements					
Module de ventilation : caractéristiques	434				


Module de ventilation : présentation générale

Présentation

Les modules de ventilation installés au-dessus des racks de la station automate TSX P57/TSX H57 assurent une convection forcée de l'air afin d'obtenir une température ambiante homogène à l'intérieur du boîtier et d'éliminer ainsi les éventuels points chauds.

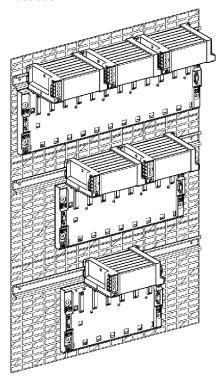
NOTE: Une sonde thermique intégrée à chaque module permet d'informer l'utilisateur lorsque la valeur maximale de la température ambiante est atteinte.

Module de ventilation :

Utilisation des modules de ventilation

L'utilisation des modules de ventilation est recommandée dans les cas suivants :

- Température ambiante dans la plage 25°C...60°C: la durée de vie des différents composants de l'automate Premium augmente (hausse de 25 % du temps moyen de bon fonctionnement).
- Température ambiante dans la plage 60°C...70°C: la température ambiante étant limitée à 60°C sans ventilation, la ventilation forcée permet de baisser la température à l'intérieur des modules de 10°C, ce qui permet d'atteindre une température à l'intérieur des modules équivalente à une température ambiante de 60°C.


Différents types de modules

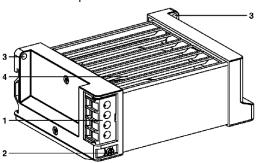
Trois modules de ventilation, adaptés aux principaux réseaux d'alimentation, sont disponibles : module de ventilation avec une alimentation 24 VCC, 110 VCA ou 220 VCA.

Selon la modularité des racks (4, 6, 8 ou 12 positions), 1, 2 ou 3 modules de ventilation peuvent être installés au-dessus de chaque rack :

- Racks 12 positions TSX RKY 12/12EX : 3 modules de ventilation
- Racks 8 positions TSX RKY 8/8EX : 2 modules de ventilation
- Racks 4 et 6 positions TSX RKY 4EX/6/6EX : 1 module de ventilation

Illustration:

TSX RKY 12/12EX


TSX RKY 8/8EX

TSX RKY 4EX/6/6EX

Module de ventilation : description physique

Dessin d'illustration

Schéma descriptif:

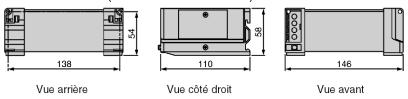
Tableau des étiquettes

Ce tableau fournit des descriptions en fonction des étiquettes :

Etiquette	Description
1	Bornier pour raccordement : • alimentation du module • alimentation de la sonde thermique et voyant ou pré-actionneur associé. Chaque borne peut accueillir un fil de 1,5 mm² (14 AWG) sans embout, ou deux fils de 1 mm² (16 AWG) avec embout.
2	Borne de raccordement du module à la terre.
3	Trous pour la fixation du module (vis M4 x 12). Si ces modules sont utilisés avec des automates Premium, il faut fixer les modules de ventilation sur un profilé AM1-ED 35 x 15.
4	Lattes de ventilation qui envoient l'air vers l'avant

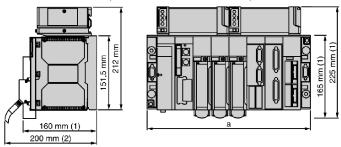
Module de ventilation : catalogue

Catalogue


Ce tableau vous présente les différents types de module ventilation :

Références	TSX FAN D2 P	TSX FAN A4 P	TSX FAN A5 P		
Tension alimentation	24 VCC	110 VCA	220 VCA		
Sonde de température	Oui (détection température. 80°C +/- 5°C), type ouvert sur alarme				
Nb. de modules par rack	 1 module sur rack 4 et 6 positions (TSX RKY 4EX/6/6EX) 2 modules sur rack 8 positions (TSX RKY 8/8EX) 3 modules sur rack 12 positions (TSX RKY 12/12EX) 				

Module de ventilation : dimensions

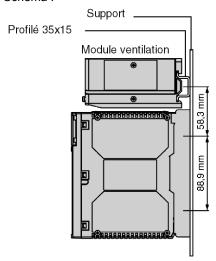

Module de ventilation seul

Dessin d'illustration (dimensions en millimètres) :

Module de ventilation + rack

Dessin d'illustration (dimensions en millimètres) :

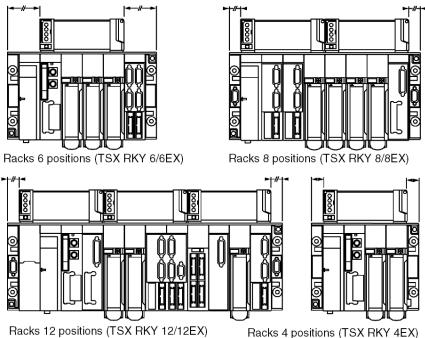
- (1) Avec module bornier à vis
- (2) Profondeur maximale avec tous types de modules et leurs connectiques associées Tableau des caractéristiques :


Racks	Nombre de positions	а
TSX RKY 4EX	4	187,9 mm
TSX RKY 6/6EX	6	261,6 mm
TSX RKY 8/8EX	8	335,3 mm
TSX RKY 12/12EX	12	482,6 mm

Module de ventilation : montage

Généralités

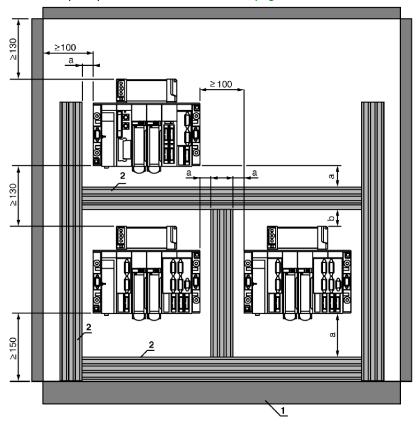
Les modules de ventilation associés aux stations Premium/Atrium doivent être montés obligatoirement sur profilés de largeur 35 mm et profondeur 15 mm (type AM1-ED...) afin de compenser l'épaisseur du rack.


Schéma:

Automate Premium

Position de montage

Position de montage des modules ventilation en fonction des types de racks :

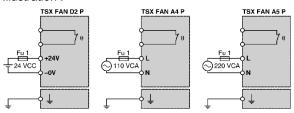


35010525 12/2018

Règles d'installation de racks équipés de modules de ventilation

Illustration

Schéma de principe : voir Installation de racks, page 368

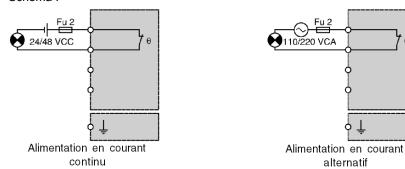


- a = 50 mm b = 30 mm
- 1 Appareillage ou enveloppe
- 2 Goulotte ou lyre de câblage

Module de ventilation : raccordements

Raccordement de l'alimentation du module de ventilation

Illustration:

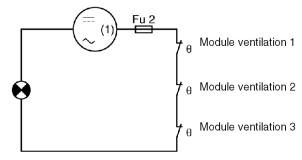


NOTE: Dans le cas d'utilisation de plusieurs modules de ventilation de même type, utilisez une alimentation commune pour l'ensemble des modules ventilation.

Raccordement de l'alimentation de la sonde de température

La sonde de température peut être alimentée indifféremment en courant continu ou en courant alternatif et raccordée sur un voyant de signalisation, une entrée automate, etc.

Schéma:



NOTE: Dans le cas d'utilisation de plusieurs modules de ventilation, les contacts de sondes seront mis en série.

alternatif

432 35010525 12/2018

Illustration:

(1) continu 24/28 V ou alternatif 110/220 V

Module de ventilation : caractéristiques

Tableau des caractéristiques

Tableau de caractéristiques des modules de ventilation :

Référence		TSX FAN D2 P	TSX FAN A4P	TSX FAN A5P	
Tension d'alimentation	Nominale	24 VCC	110 VCA	220 VCA	
	Limite	2027,6 VCC	90120 VCA	180260 VCA	
Courant absorbé à tension nominale		180 mA	180 mA	100 mA	
Sonde de température	Tension alimentation	continu 24/48 VCC ou alternatif 110/220 VCA			
	Pouvoir de coupure (sur charge résistive)	1 A à 24 VCC / 10 000 manœuvres 1 A à 48 VCC / 30 000 manœuvres 1 A à 110 VCC / 30 000 manœuvres 0,5 A à 220 VCC / 10 000 manœuvres			
	Déclenchement	Température >= 75°C +/- 5°C			
	Etat	0,5 A à 220 VCC / 10 000 manœuvres Température >= 75°C +/- 5°C			
Nb. de modules par rack		 1 module sur rack 4 et 6 positions (TSX RKY 4EX/6/6EX) 2 modules sur rack 8 positions (TSX RKY 8/8EX) 3 modules sur rack 12 positions (TSX RKY 12/12EX) 			

Index

Fusible, 278

Н accessoires de câblage, 201 homologations officielles, 69 Horodateurs, 85 adressage Atrium. 212 Atrium , 213 modules, 385 racks. 382 installation de processeurs alimentations. 253 Premium. 391 alimentations process, 315 installation de racks. 367 alimentations process, installation, 339 Installation des modules sur rack, 387 alimentations, installation, 263 Atrium, 216 M architectures. 420 mémoire modules d'UC. 92 В Module de déport bus X : diagnostic, 419 batteries, installation, 113 Modules d'extension de bus X : raccordements. 417 modules de déport de bus X, 405 modules de processeurs, diagnostics carte mémoire, installation, 109 Premium. 113 cartes mémoire. 95 modules de ventilation, 423 conformité. 69 connexion à la terre P racks. 373 consommation, 293 PCMCIA, cartes, 95 performances, 181 Pile pour cartes PCMCIA ח Durée de vie. 124 diagnostic de modules UC, 114 piles pour cartes PCMCIA diagnostic des alimentations, 282 remplacement, 120 diagnostics des modules de processeurs. piles pour UC remplacement, 234 113 diagnostics pour alimentations, 281 processeurs diagnostics pour modules SPU Atrium, 191 Atrium, 231 Premium, 77 F R

35010525 12/2018 435

Racks, 26

racks accessoires, 391 relais d'alarme alimentations, 288 S station automate, présentation, 17 systèmes d'alimentation VCA, 275 systèmes d'alimentation VCC, 275 т TBXSUP10. 315 temps de réponse sur événement, 190 terminaisons de lignes, installation, 398 topologies, 420 racks, 375 TSXBAT02, 120 TSXBAT03, 120 TSXCBY..0K, 391 TSXCBY1000, 391 TSXFAN. 423 TSXH5724M, *77* TSXH5744M, 77 TSXP53204, 77 TSXP57/TSXH57, 77 TSXP570244, 77 TSXP57104, 77 TSXP57154, 77 TSXP571634. 77 TSXP57254, 77 TSXP572634, 77 TSXP57304. 77 TSXP57354. 77 TSXP573634, 77 TSXP57454, 77 TSXP574634, 77 TSXP57554, 77 TSXP575634, 77 TSXP576634. 77 TSXPCI57204. 191 TSXPCI57354. 191 TSXPCIACC1. 201

TSXPSI2010, 201

TSXPSY1610, 309
TSXPSY2600, 303
TSXPSY3610, 311
TSXPSY5500, 305
TSXPSY5520, 313
TSXREY200, 405
TSXRKA02, 399
TSXRKYxx, 355
TSXSUP101, 315
TSXSUP1011, 315
TSXSUP1021, 315
TSXSUP1051, 315
TSXSUP1051, 315
TSXSUP1051, 315
TSXSUP1051, 315

U

UC, installation Atrium, 205